30,718 research outputs found

    Improving Reachability and Navigability in Recommender Systems

    Full text link
    In this paper, we investigate recommender systems from a network perspective and investigate recommendation networks, where nodes are items (e.g., movies) and edges are constructed from top-N recommendations (e.g., related movies). In particular, we focus on evaluating the reachability and navigability of recommendation networks and investigate the following questions: (i) How well do recommendation networks support navigation and exploratory search? (ii) What is the influence of parameters, in particular different recommendation algorithms and the number of recommendations shown, on reachability and navigability? and (iii) How can reachability and navigability be improved in these networks? We tackle these questions by first evaluating the reachability of recommendation networks by investigating their structural properties. Second, we evaluate navigability by simulating three different models of information seeking scenarios. We find that with standard algorithms, recommender systems are not well suited to navigation and exploration and propose methods to modify recommendations to improve this. Our work extends from one-click-based evaluations of recommender systems towards multi-click analysis (i.e., sequences of dependent clicks) and presents a general, comprehensive approach to evaluating navigability of arbitrary recommendation networks

    Performance Guarantees for Distributed Reachability Queries

    Get PDF
    In the real world a graph is often fragmented and distributed across different sites. This highlights the need for evaluating queries on distributed graphs. This paper proposes distributed evaluation algorithms for three classes of queries: reachability for determining whether one node can reach another, bounded reachability for deciding whether there exists a path of a bounded length between a pair of nodes, and regular reachability for checking whether there exists a path connecting two nodes such that the node labels on the path form a string in a given regular expression. We develop these algorithms based on partial evaluation, to explore parallel computation. When evaluating a query Q on a distributed graph G, we show that these algorithms possess the following performance guarantees, no matter how G is fragmented and distributed: (1) each site is visited only once; (2) the total network traffic is determined by the size of Q and the fragmentation of G, independent of the size of G; and (3) the response time is decided by the largest fragment of G rather than the entire G. In addition, we show that these algorithms can be readily implemented in the MapReduce framework. Using synthetic and real-life data, we experimentally verify that these algorithms are scalable on large graphs, regardless of how the graphs are distributed.Comment: VLDB201

    A statistical inference method for the stochastic reachability analysis.

    Get PDF
    The main contribution of this paper is the characterization of reachability problem associated to stochastic hybrid systems in terms of imprecise probabilities. This provides the connection between reachability problem and Bayesian statistics. Using generalised Bayesian statistical inference, a new concept of conditional reach set probabilities is defined. Then possible algorithms to compute the reach set probabilities are derived

    Improving search order for reachability testing in timed automata

    Get PDF
    Standard algorithms for reachability analysis of timed automata are sensitive to the order in which the transitions of the automata are taken. To tackle this problem, we propose a ranking system and a waiting strategy. This paper discusses the reason why the search order matters and shows how a ranking system and a waiting strategy can be integrated into the standard reachability algorithm to alleviate and prevent the problem respectively. Experiments show that the combination of the two approaches gives optimal search order on standard benchmarks except for one example. This suggests that it should be used instead of the standard BFS algorithm for reachability analysis of timed automata

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states

    Reachability Preservers: New Extremal Bounds and Approximation Algorithms

    Full text link
    We abstract and study \emph{reachability preservers}, a graph-theoretic primitive that has been implicit in prior work on network design. Given a directed graph G=(V,E)G = (V, E) and a set of \emph{demand pairs} PV×VP \subseteq V \times V, a reachability preserver is a sparse subgraph HH that preserves reachability between all demand pairs. Our first contribution is a series of extremal bounds on the size of reachability preservers. Our main result states that, for an nn-node graph and demand pairs of the form PS×VP \subseteq S \times V for a small node subset SS, there is always a reachability preserver on O(n+nPS)O(n+\sqrt{n |P| |S|}) edges. We additionally give a lower bound construction demonstrating that this upper bound characterizes the settings in which O(n)O(n) size reachability preservers are generally possible, in a large range of parameters. The second contribution of this paper is a new connection between extremal graph sparsification results and classical Steiner Network Design problems. Surprisingly, prior to this work, the osmosis of techniques between these two fields had been superficial. This allows us to improve the state of the art approximation algorithms for the most basic Steiner-type problem in directed graphs from the O(n0.6+ε)O(n^{0.6+\varepsilon}) of Chlamatac, Dinitz, Kortsarz, and Laekhanukit (SODA'17) to O(n4/7+ε)O(n^{4/7+\varepsilon}).Comment: SODA '1

    Decremental Single-Source Reachability in Planar Digraphs

    Full text link
    In this paper we show a new algorithm for the decremental single-source reachability problem in directed planar graphs. It processes any sequence of edge deletions in O(nlog2nloglogn)O(n\log^2{n}\log\log{n}) total time and explicitly maintains the set of vertices reachable from a fixed source vertex. Hence, if all edges are eventually deleted, the amortized time of processing each edge deletion is only O(log2nloglogn)O(\log^2 n \log \log n), which improves upon a previously known O(n)O(\sqrt{n}) solution. We also show an algorithm for decremental maintenance of strongly connected components in directed planar graphs with the same total update time. These results constitute the first almost optimal (up to polylogarithmic factors) algorithms for both problems. To the best of our knowledge, these are the first dynamic algorithms with polylogarithmic update times on general directed planar graphs for non-trivial reachability-type problems, for which only polynomial bounds are known in general graphs
    corecore