11,435 research outputs found

    Safe Sequential Path Planning Under Disturbances and Imperfect Information

    Full text link
    Multi-UAV systems are safety-critical, and guarantees must be made to ensure no unsafe configurations occur. Hamilton-Jacobi (HJ) reachability is ideal for analyzing such safety-critical systems; however, its direct application is limited to small-scale systems of no more than two vehicles due to an exponentially-scaling computational complexity. Previously, the sequential path planning (SPP) method, which assigns strict priorities to vehicles, was proposed; SPP allows multi-vehicle path planning to be done with a linearly-scaling computational complexity. However, the previous formulation assumed that there are no disturbances, and that every vehicle has perfect knowledge of higher-priority vehicles' positions. In this paper, we make SPP more practical by providing three different methods to account for disturbances in dynamics and imperfect knowledge of higher-priority vehicles' states. Each method has different assumptions about information sharing. We demonstrate our proposed methods in simulations.Comment: American Control Conference, 201

    Modeling rationality to control self-organization of crowds: An environmental approach

    Full text link
    In this paper we propose a classification of crowd models in built environments based on the assumed pedestrian ability to foresee the movements of other walkers. At the same time, we introduce a new family of macroscopic models, which make it possible to tune the degree of predictiveness (i.e., rationality) of the individuals. By means of these models we describe both the natural behavior of pedestrians, i.e., their expected behavior according to their real limited predictive ability, and a target behavior, i.e., a particularly efficient behavior one would like them to assume (for, e.g., logistic or safety reasons). Then we tackle a challenging shape optimization problem, which consists in controlling the environment in such a way that the natural behavior is as close as possible to the target one, thereby inducing pedestrians to behave more rationally than what they would naturally do. We present numerical tests which elucidate the role of rational/predictive abilities and show some promising results about the shape optimization problem

    Usable boundary for visibility-based surveillance-evasion games

    Full text link
    We consider a surveillance-evasion game in an environment with obstacles. In such an environment, a mobile pursuer seeks to maintain the visibility with a mobile evader, who tries to get occluded from the pursuer in the shortest time possible. In this two-player zero-sum game setting, we study the discontinuities of the value of the game near the boundary of the target set (the non-visibility region). In particular, we describe the transition between the usable part of the boundary of the target (where the value vanishes) and the non-usable part (where the value is positive). We show that the value enjoys a different behaviour depending on the regularity of the obstacles involved in the game. Namely, we prove that the boundary profile is continuous for the case of smooth obstacles, and that it exhibits a jump discontinuity when the obstacle contains corners. Moreover, we prove that, in the latter case, there is a semi-permeable barrier emanating from the interface between the usable and the non-usable part of the boundary of the target set.Comment: 33 pages, 8 figure
    • …
    corecore