69,226 research outputs found

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    Learning from Physics Education Research: Lessons for Economics Education

    Get PDF
    We believe that economists have much to learn from educational research practices and related pedagogical innovations in other disciplines, in particular physics education. In this paper we identify three key features of physics education research that distinguish it from economics education research - (1) the intentional grounding of physics education research in learning science principles, (2) a shared conceptual research framework focused on how students learn physics concepts, and (3) a cumulative process of knowledge-building in the discipline - and describe their influence on new teaching pedagogies, instructional activities, and curricular design in physics education. In addition, we highlight four specific examples of successful pedagogical innovations drawn from physics education - context-rich problems, concept tests, just-in-time teaching, and interactive lecture demonstrations - and illustrate how these practices can be adapted for economic education.Comment: 19 pages, 3 figures, submitted to Journal of Economic Education, also available from Social Science Research Network <http://ssrn.com/abstract=1151430

    Developing and Researching PhET simulations for Teaching Quantum Mechanics

    Get PDF
    Quantum mechanics is difficult to learn because it is counterintuitive, hard to visualize, mathematically challenging, and abstract. The Physics Education Technology (PhET) Project, known for its interactive computer simulations for teaching and learning physics, now includes 18 simulations on quantum mechanics designed to improve learning of this difficult subject. Our simulations include several key features to help students build mental models and intuitions about quantum mechanics: visual representations of abstract concepts and microscopic processes that cannot be directly observed, interactive environments that directly couple students' actions to animations, connections to everyday life, and efficient calculations so students can focus on the concepts rather than the math. Like all PhET simulations, these are developed using the results of education research and feedback from educators, and are tested in student interviews and classroom studies. This article provides an overview of the PhET quantum simulations and their development. We also describe research demonstrating their effectiveness and share some insights about student thinking that we have gained from our research on quantum simulations.Comment: accepted by American Journal of Physics; v2 includes an additional study, more explanation of research behind claims, clearer wording, and more reference

    Using Data in Undergraduate Science Classrooms

    Get PDF
    Provides pedagogical insight concerning the skill of using data The resource being annotated is: http://www.dlese.org/dds/catalog_DATA-CLASS-000-000-000-007.htm

    Understanding the Internet: Model, Metaphor, and Analogy

    Get PDF
    published or submitted for publicatio

    Reinventing College Physics for Biologists: Explicating an epistemological curriculum

    Full text link
    The University of Maryland Physics Education Research Group (UMd-PERG) carried out a five-year research project to rethink, observe, and reform introductory algebra-based (college) physics. This class is one of the Maryland Physics Department's large service courses, serving primarily life-science majors. After consultation with biologists, we re-focused the class on helping the students learn to think scientifically -- to build coherence, think in terms of mechanism, and to follow the implications of assumptions. We designed the course to tap into students' productive conceptual and epistemological resources, based on a theoretical framework from research on learning. The reformed class retains its traditional structure in terms of time and instructional personnel, but we modified existing best-practices curricular materials, including Peer Instruction, Interactive Lecture Demonstrations, and Tutorials. We provided class-controlled spaces for student collaboration, which allowed us to observe and record students learning directly. We also scanned all written homework and examinations, and we administered pre-post conceptual and epistemological surveys. The reformed class enhanced the strong gains on pre-post conceptual tests produced by the best-practices materials while obtaining unprecedented pre-post gains on epistemological surveys instead of the traditional losses.Comment: 35 pages including a 15 page appendix of supplementary material

    Science teachers' transformations of the use of computer modeling in the classroom: using research to inform training

    Get PDF
    This paper, from the UK group in the STTIS (Science Teacher Training in an Information Society) project, describes research into the nature of teachers' transformations of computer modeling, and the development of related teacher training materials. Eight teacher case studies help to identify factors that favor or hinder the take-up of innovative computer tools in science classes, and to show how teachers incorporate these tools in the curriculum. The training materials use the results to provide activities enabling teachers to learn about the tools and about the outcomes of the research into their implementation, and help them to take account of these ideas in their own implementation of the innovations
    • …
    corecore