2,820 research outputs found

    Embeddings of 3-connected 3-regular planar graphs on surfaces of non-negative Euler characteristic

    Full text link
    Whitney's theorem states that every 3-connected planar graph is uniquely embeddable on the sphere. On the other hand, it has many inequivalent embeddings on another surface. We shall characterize structures of a 33-connected 33-regular planar graph GG embedded on the projective-plane, the torus and the Klein bottle, and give a one-to-one correspondence between inequivalent embeddings of GG on each surface and some subgraphs of the dual of GG embedded on the sphere. These results enable us to give explicit bounds for the number of inequivalent embeddings of GG on each surface, and propose effective algorithms for enumerating and counting these embeddings.Comment: 19 pages, 12 figure

    The Complexity of Simultaneous Geometric Graph Embedding

    Full text link
    Given a collection of planar graphs G1,…,GkG_1,\dots,G_k on the same set VV of nn vertices, the simultaneous geometric embedding (with mapping) problem, or simply kk-SGE, is to find a set PP of nn points in the plane and a bijection Ο•:Vβ†’P\phi: V \to P such that the induced straight-line drawings of G1,…,GkG_1,\dots,G_k under Ο•\phi are all plane. This problem is polynomial-time equivalent to weak rectilinear realizability of abstract topological graphs, which Kyn\v{c}l (doi:10.1007/s00454-010-9320-x) proved to be complete for βˆƒR\exists\mathbb{R}, the existential theory of the reals. Hence the problem kk-SGE is polynomial-time equivalent to several other problems in computational geometry, such as recognizing intersection graphs of line segments or finding the rectilinear crossing number of a graph. We give an elementary reduction from the pseudoline stretchability problem to kk-SGE, with the property that both numbers kk and nn are linear in the number of pseudolines. This implies not only the βˆƒR\exists\mathbb{R}-hardness result, but also a 22Ξ©(n)2^{2^{\Omega (n)}} lower bound on the minimum size of a grid on which any such simultaneous embedding can be drawn. This bound is tight. Hence there exists such collections of graphs that can be simultaneously embedded, but every simultaneous drawing requires an exponential number of bits per coordinates. The best value that can be extracted from Kyn\v{c}l's proof is only 22Ξ©(n)2^{2^{\Omega (\sqrt{n})}}

    The bondage number of graphs on topological surfaces and Teschner's conjecture

    Get PDF
    The bondage number of a graph is the smallest number of its edges whose removal results in a graph having a larger domination number. We provide constant upper bounds for the bondage number of graphs on topological surfaces, improve upper bounds for the bondage number in terms of the maximum vertex degree and the orientable and non-orientable genera of the graph, and show tight lower bounds for the number of vertices of graphs 2-cell embeddable on topological surfaces of a given genus. Also, we provide stronger upper bounds for graphs with no triangles and graphs with the number of vertices larger than a certain threshold in terms of the graph genera. This settles Teschner's Conjecture in positive for almost all graphs.Comment: 21 pages; Original version from January 201

    On the Number of Embeddings of Minimally Rigid Graphs

    Full text link
    Rigid frameworks in some Euclidian space are embedded graphs having a unique local realization (up to Euclidian motions) for the given edge lengths, although globally they may have several. We study the number of distinct planar embeddings of minimally rigid graphs with nn vertices. We show that, modulo planar rigid motions, this number is at most (2nβˆ’4nβˆ’2)β‰ˆ4n{{2n-4}\choose {n-2}} \approx 4^n. We also exhibit several families which realize lower bounds of the order of 2n2^n, 2.21n2.21^n and 2.88n2.88^n. For the upper bound we use techniques from complex algebraic geometry, based on the (projective) Cayley-Menger variety CM2,n(C)βŠ‚P(n2)βˆ’1(C)CM^{2,n}(C)\subset P_{{{n}\choose {2}}-1}(C) over the complex numbers CC. In this context, point configurations are represented by coordinates given by squared distances between all pairs of points. Sectioning the variety with 2nβˆ’42n-4 hyperplanes yields at most deg(CM2,n)deg(CM^{2,n}) zero-dimensional components, and one finds this degree to be D2,n=1/2(2nβˆ’4nβˆ’2)D^{2,n}={1/2}{{2n-4}\choose {n-2}}. The lower bounds are related to inductive constructions of minimally rigid graphs via Henneberg sequences. The same approach works in higher dimensions. In particular we show that it leads to an upper bound of 2D3,n=2nβˆ’3nβˆ’2(nβˆ’6nβˆ’3)2 D^{3,n}= {\frac{2^{n-3}}{n-2}}{{n-6}\choose{n-3}} for the number of spatial embeddings with generic edge lengths of the 1-skeleton of a simplicial polyhedron, up to rigid motions

    The Z2\mathbb{Z}_2-genus of Kuratowski minors

    Full text link
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2\mathbb{Z}_2-genus of a graph GG is the minimum gg such that GG has an independently even drawing on the orientable surface of genus gg. An unpublished result by Robertson and Seymour implies that for every tt, every graph of sufficiently large genus contains as a minor a projective tΓ—tt\times t grid or one of the following so-called tt-Kuratowski graphs: K3,tK_{3,t}, or tt copies of K5K_5 or K3,3K_{3,3} sharing at most 22 common vertices. We show that the Z2\mathbb{Z}_2-genus of graphs in these families is unbounded in tt; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2\mathbb{Z}_2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2\mathbb{Z}_2-genus of graphs.Comment: 23 pages, 7 figures; a few references added and correcte
    • …
    corecore