7 research outputs found

    A Study on Replay Attack and Anti-Spoofing for Automatic Speaker Verification

    Full text link
    For practical automatic speaker verification (ASV) systems, replay attack poses a true risk. By replaying a pre-recorded speech signal of the genuine speaker, ASV systems tend to be easily fooled. An effective replay detection method is therefore highly desirable. In this study, we investigate a major difficulty in replay detection: the over-fitting problem caused by variability factors in speech signal. An F-ratio probing tool is proposed and three variability factors are investigated using this tool: speaker identity, speech content and playback & recording device. The analysis shows that device is the most influential factor that contributes the highest over-fitting risk. A frequency warping approach is studied to alleviate the over-fitting problem, as verified on the ASV-spoof 2017 database

    Self-Attention and Hybrid Features for Replay and Deep-Fake Audio Detection

    Full text link
    Due to the successful application of deep learning, audio spoofing detection has made significant progress. Spoofed audio with speech synthesis or voice conversion can be well detected by many countermeasures. However, an automatic speaker verification system is still vulnerable to spoofing attacks such as replay or Deep-Fake audio. Deep-Fake audio means that the spoofed utterances are generated using text-to-speech (TTS) and voice conversion (VC) algorithms. Here, we propose a novel framework based on hybrid features with the self-attention mechanism. It is expected that hybrid features can be used to get more discrimination capacity. Firstly, instead of only one type of conventional feature, deep learning features and Mel-spectrogram features will be extracted by two parallel paths: convolution neural networks and a short-time Fourier transform (STFT) followed by Mel-frequency. Secondly, features will be concatenated by a max-pooling layer. Thirdly, there is a Self-attention mechanism for focusing on essential elements. Finally, ResNet and a linear layer are built to get the results. Experimental results reveal that the hybrid features, compared with conventional features, can cover more details of an utterance. We achieve the best Equal Error Rate (EER) of 9.67\% in the physical access (PA) scenario and 8.94\% in the Deep fake task on the ASVspoof 2021 dataset. Compared with the best baseline system, the proposed approach improves by 74.60\% and 60.05\%, respectively

    Re-assessing the threat of replay spoofing attacks against automatic speaker verification

    No full text

    Advanced Biometrics with Deep Learning

    Get PDF
    Biometrics, such as fingerprint, iris, face, hand print, hand vein, speech and gait recognition, etc., as a means of identity management have become commonplace nowadays for various applications. Biometric systems follow a typical pipeline, that is composed of separate preprocessing, feature extraction and classification. Deep learning as a data-driven representation learning approach has been shown to be a promising alternative to conventional data-agnostic and handcrafted pre-processing and feature extraction for biometric systems. Furthermore, deep learning offers an end-to-end learning paradigm to unify preprocessing, feature extraction, and recognition, based solely on biometric data. This Special Issue has collected 12 high-quality, state-of-the-art research papers that deal with challenging issues in advanced biometric systems based on deep learning. The 12 papers can be divided into 4 categories according to biometric modality; namely, face biometrics, medical electronic signals (EEG and ECG), voice print, and others

    Replay detection in voice biometrics: an investigation of adaptive and non-adaptive front-ends

    Full text link
    Among various physiological and behavioural traits, speech has gained popularity as an effective mode of biometric authentication. Even though they are gaining popularity, automatic speaker verification systems are vulnerable to malicious attacks, known as spoofing attacks. Among various types of spoofing attacks, replay attack poses the biggest threat due to its simplicity and effectiveness. This thesis investigates the importance of 1) improving front-end feature extraction via novel feature extraction techniques and 2) enhancing spectral components via adaptive front-end frameworks to improve replay attack detection. This thesis initially focuses on AM-FM modelling techniques and their use in replay attack detection. A novel method to extract the sub-band frequency modulation (FM) component using the spectral centroid of a signal is proposed, and its use as a potential acoustic feature is also discussed. Frequency Domain Linear Prediction (FDLP) is explored as a method to obtain the temporal envelope of a speech signal. The temporal envelope carries amplitude modulation (AM) information of speech resonances. Several features are extracted from the temporal envelope and the FDLP residual signal. These features are then evaluated for replay attack detection and shown to have significant capability in discriminating genuine and spoofed signals. Fusion of AM and FM-based features has shown that AM and FM carry complementary information that helps distinguish replayed signals from genuine ones. The importance of frequency band allocation when creating filter banks is studied as well to further advance the understanding of front-ends for replay attack detection. Mechanisms inspired by the human auditory system that makes the human ear an excellent spectrum analyser have been investigated and integrated into front-ends. Spatial differentiation, a mechanism that provides additional sharpening to auditory filters is one of them that is used in this work to improve the selectivity of the sub-band decomposition filters. Two features are extracted using the improved filter bank front-end: spectral envelope centroid magnitude (SECM) and spectral envelope centroid frequency (SECF). These are used to establish the positive effect of spatial differentiation on discriminating spoofed signals. Level-dependent filter tuning, which allows the ear to handle a large dynamic range, is integrated into the filter bank to further improve the front-end. This mechanism converts the filter bank into an adaptive one where the selectivity of the filters is varied based on the input signal energy. Experimental results show that this leads to improved spoofing detection performance. Finally, deep neural network (DNN) mechanisms are integrated into sub-band feature extraction to develop an adaptive front-end that adjusts its characteristics based on the sub-band signals. A DNN-based controller that takes sub-band FM components as input, is developed to adaptively control the selectivity and sensitivity of a parallel filter bank to enhance the artifacts that differentiate a replayed signal from a genuine signal. This work illustrates gradient-based optimization of a DNN-based controller using the feedback from a spoofing detection back-end classifier, thus training it to reduce spoofing detection error. The proposed framework has displayed a superior ability in identifying high-quality replayed signals compared to conventional non-adaptive frameworks. All techniques proposed in this thesis have been evaluated on well-established databases on replay attack detection and compared with state-of-the-art baseline systems
    corecore