5,307 research outputs found

    Two knowledge-based methods for High-Performance Sense Distribution Learning

    Get PDF
    Knowing the correct distribution of senses within a corpus can potentially boost the performance of Word Sense Disambiguation (WSD) systems by many points. We present two fully automatic and language-independent methods for computing the distribution of senses given a raw corpus of sentences. Intrinsic and extrinsic evaluations show that our methods outperform the current state of the art in sense distribution learning and the strongest baselines for the most frequent sense in multiple languages and on domain-specific test sets. Our sense distributions are available at http://trainomatic.org

    Huge automatically extracted training sets for multilingual Word Sense Disambiguation

    Get PDF
    We release to the community six large-scale sense-annotated datasets in multiple language to pave the way for supervised multilingual Word Sense Disambiguation. Our datasets cover all the nouns in the English WordNet and their translations in other languages for a total of millions of sense-tagged sentences. Experiments prove that these corpora can be effectively used as training sets for supervised WSD systems, surpassing the state of the art for low- resourced languages and providing competitive results for English, where manually annotated training sets are accessible. The data is available at trainomatic. org

    Finding predominant word senses in untagged text

    Get PDF
    In word sense disambiguation (WSD), the heuristic of choosing the most common sense is extremely powerful because the distribution of the senses of a word is often skewed. The problem with using the predominant, or first sense heuristic, aside from the fact that it does not take surrounding context into account, is that it assumes some quantity of handtagged data. Whilst there are a few hand-tagged corpora available for some languages, one would expect the frequency distribution of the senses of words, particularly topical words, to depend on the genre and domain of the text under consideration. We present work on the use of a thesaurus acquired from raw textual corpora and the WordNet similarity package to find predominant noun senses automatically. The acquired predominant senses give a precision of 64% on the nouns of the SENSEVAL- 2 English all-words task. This is a very promising result given that our method does not require any hand-tagged text, such as SemCor. Furthermore, we demonstrate that our method discovers appropriate predominant senses for words from two domainspecific corpora

    Learning Graph Embeddings from WordNet-based Similarity Measures

    Full text link
    We present path2vec, a new approach for learning graph embeddings that relies on structural measures of pairwise node similarities. The model learns representations for nodes in a dense space that approximate a given user-defined graph distance measure, such as e.g. the shortest path distance or distance measures that take information beyond the graph structure into account. Evaluation of the proposed model on semantic similarity and word sense disambiguation tasks, using various WordNet-based similarity measures, show that our approach yields competitive results, outperforming strong graph embedding baselines. The model is computationally efficient, being orders of magnitude faster than the direct computation of graph-based distances.Comment: Accepted to StarSem 201

    Russian word sense induction by clustering averaged word embeddings

    Full text link
    The paper reports our participation in the shared task on word sense induction and disambiguation for the Russian language (RUSSE-2018). Our team was ranked 2nd for the wiki-wiki dataset (containing mostly homonyms) and 5th for the bts-rnc and active-dict datasets (containing mostly polysemous words) among all 19 participants. The method we employed was extremely naive. It implied representing contexts of ambiguous words as averaged word embedding vectors, using off-the-shelf pre-trained distributional models. Then, these vector representations were clustered with mainstream clustering techniques, thus producing the groups corresponding to the ambiguous word senses. As a side result, we show that word embedding models trained on small but balanced corpora can be superior to those trained on large but noisy data - not only in intrinsic evaluation, but also in downstream tasks like word sense induction.Comment: Proceedings of the 24rd International Conference on Computational Linguistics and Intellectual Technologies (Dialogue-2018

    Resolving Lexical Ambiguity in Tensor Regression Models of Meaning

    Full text link
    This paper provides a method for improving tensor-based compositional distributional models of meaning by the addition of an explicit disambiguation step prior to composition. In contrast with previous research where this hypothesis has been successfully tested against relatively simple compositional models, in our work we use a robust model trained with linear regression. The results we get in two experiments show the superiority of the prior disambiguation method and suggest that the effectiveness of this approach is model-independent
    corecore