7,784 research outputs found

    A principled information valuation for communications during multi-agent coordination

    No full text
    Decentralised coordination in multi-agent systems is typically achieved using communication. However, in many cases, communication is expensive to utilise because there is limited bandwidth, it may be dangerous to communicate, or communication may simply be unavailable at times. In this context, we argue for a rational approach to communication --- if it has a cost, the agents should be able to calculate a value of communicating. By doing this, the agents can balance the need to communicate with the cost of doing so. In this research, we present a novel model of rational communication that uses information theory to value communications, and employ this valuation in a decision theoretic coordination mechanism. A preliminary empirical evaluation of the benefits of this approach is presented in the context of the RoboCupRescue simulator

    Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs

    Full text link
    Verification of PCTL properties of MDPs with convex uncertainties has been investigated recently by Puggelli et al. However, model checking algorithms typically suffer from state space explosion. In this paper, we address probabilistic bisimulation to reduce the size of such an MDPs while preserving PCTL properties it satisfies. We discuss different interpretations of uncertainty in the models which are studied in the literature and that result in two different definitions of bisimulations. We give algorithms to compute the quotients of these bisimulations in time polynomial in the size of the model and exponential in the uncertain branching. Finally, we show by a case study that large models in practice can have small branching and that a substantial state space reduction can be achieved by our approach.Comment: In Proceedings SynCoP 2014, arXiv:1403.784

    Extending Hybrid CSP with Probability and Stochasticity

    Full text link
    Probabilistic and stochastic behavior are omnipresent in computer controlled systems, in particular, so-called safety-critical hybrid systems, because of fundamental properties of nature, uncertain environments, or simplifications to overcome complexity. Tightly intertwining discrete, continuous and stochastic dynamics complicates modelling, analysis and verification of stochastic hybrid systems (SHSs). In the literature, this issue has been extensively investigated, but unfortunately it still remains challenging as no promising general solutions are available yet. In this paper, we give our effort by proposing a general compositional approach for modelling and verification of SHSs. First, we extend Hybrid CSP (HCSP), a very expressive and process algebra-like formal modeling language for hybrid systems, by introducing probability and stochasticity to model SHSs, which is called stochastic HCSP (SHCSP). To this end, ordinary differential equations (ODEs) are generalized by stochastic differential equations (SDEs) and non-deterministic choice is replaced by probabilistic choice. Then, we extend Hybrid Hoare Logic (HHL) to specify and reason about SHCSP processes. We demonstrate our approach by an example from real-world.Comment: The conference version of this paper is accepted by SETTA 201

    Evaluating the role of quantitative modeling in language evolution

    No full text
    Models are a flourishing and indispensable area of research in language evolution. Here we highlight critical issues in using and interpreting models, and suggest viable approaches. First, contrasting models can explain the same data and similar modelling techniques can lead to diverging conclusions. This should act as a reminder to use the extreme malleability of modelling parsimoniously when interpreting results. Second, quantitative techniques similar to those used in modelling language evolution have proven themselves inadequate in other disciplines. Cross-disciplinary fertilization is crucial to avoid mistakes which have previously occurred in other areas. Finally, experimental validation is necessary both to sharpen models' hypotheses, and to support their conclusions. Our belief is that models should be interpreted as quantitative demonstrations of logical possibilities, rather than as direct sources of evidence. Only an integration of theoretical principles, quantitative proofs and empirical validation can allow research in the evolution of language to progress
    corecore