3 research outputs found

    Slight-Delay Shaped Variable Bit Rate (SD-SVBR) Technique for Video Transmission

    Get PDF
    The aim of this thesis is to present a new shaped Variable Bit Rate (VBR) for video transmission, which plays a crucial role in delivering video traffic over the Internet. This is due to the surge of video media applications over the Internet and the video typically has the characteristic of a highly bursty traffic, which leads to the Internet bandwidth fluctuation. This new shaped algorithm, referred to as Slight Delay - Shaped Variable Bit Rate (SD-SVBR), is aimed at controlling the video rate for video application transmission. It is designed based on the Shaped VBR (SVBR) algorithm and was implemented in the Network Simulator 2 (ns-2). SVBR algorithm is devised for real-time video applications and it has several limitations and weaknesses due to its embedded estimation or prediction processes. SVBR faces several problems, such as the occurrence of unwanted sharp decrease in data rate, buffer overflow, the existence of a low data rate, and the generation of a cyclical negative fluctuation. The new algorithm is capable of producing a high data rate and at the same time a better quantization parameter (QP) stability video sequence. In addition, the data rate is shaped efficiently to prevent unwanted sharp increment or decrement, and to avoid buffer overflow. To achieve the aim, SD-SVBR has three strategies, which are processing the next Group of Picture (GoP) video sequence and obtaining the QP-to-data rate list, dimensioning the data rate to a higher utilization of the leaky-bucket, and implementing a QP smoothing method by carefully measuring the effects of following the previous QP value. However, this algorithm has to be combined with a network feedback algorithm to produce a better overall video rate control. A combination of several video clips, which consisted of a varied video rate, has been used for the purpose of evaluating SD-SVBR performance. The results showed that SD-SVBR gains an impressive overall Peak Signal-to-Noise Ratio (PSNR) value. In addition, in almost all cases, it gains a high video rate but without buffer overflow, utilizes the buffer well, and interestingly, it is still able to obtain smoother QP fluctuation

    Analysis for Scalable Coding of Quality-Adjustable Sensor Data

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사)-- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : 전기·컴퓨터곡학뢀, 2014. 2. μ‹ ν˜„μ‹.Machine-generated data such as sensor data now comprise major portion of available information. This thesis addresses two important problems: storing of massive sensor data collection and efficient sensing. We first propose a quality-adjustable sensor data archiving, which compresses entire collection of sensor data efficiently without compromising key features. Considering the data aging aspect of sensor data, we make our archiving scheme capable of controlling data fidelity to exploit less frequent data access of user. This flexibility on quality adjustability leads to more efficient usage of storage space. In order to store data from various sensor types in cost-effective way, we study the optimal storage configuration strategy using analytical models that capture characteristics of our scheme. This strategy helps storing sensor data blocks with the optimal configurations that maximizes data fidelity of various sensor data under given storage space. Next, we consider efficient sensing schemes and propose a quality-adjustable sensing scheme. We adopt compressive sensing (CS) that is well suited for resource-limited sensors because of its low computational complexity. We enhance quality adjustability intrinsic to CS with quantization and especially temporal downsampling. Our sensing architecture provides more rate-distortion operating points than previous schemes, which enables sensors to adapt data quality in more efficient way considering overall performance. Moreover, the proposed temporal downsampling improves coding efficiency that is a drawback of CS. At the same time, the downsampling further reduces computational complexity of sensing devices, along with sparse random matrix. As a result, our quality-adjustable sensing can deliver gains to a wide variety of resource-constrained sensing techniques.Abstract i Contents iii List of Figures vi List of Tables x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Spatio-Temporal Correlation in Sensor Data 3 1.3 Quality Adjustability of Sensor Data 7 1.4 Research Contributions 9 1.5 Thesis Organization 11 Chapter 2 Archiving of Sensor Data 12 2.1 Encoding Sensor Data Collection 12 2.1.1 Archiving Architecture 13 2.1.2 Data Conversion 16 2.2 Compression Ratio Comparison 20 2.3 Quality-Adjustable Archiving Model 25 2.3.1 Data Fidelity Model: Rate 25 2.3.2 Data Fidelity Model: Distortion 28 2.4 QP-Rate-Distortion Model 36 2.5 Optimal Rate Allocation 40 2.5.1 Rate Allocation Strategy 40 2.5.2 Optimal Storage Configuration 41 2.5.3 Experimental Results 44 Chapter 3 Scalable Management of Storage 46 3.1 Scalable Quality Management 46 3.1.1 Archiving Architecture 47 3.1.2 Compression Ratio Comparison 49 3.2 Enhancing Quality Adjustability 51 3.2.1 Data Fidelity Model: Rate 52 3.2.2 Data Fidelity Model: Distortion 55 3.3 Optimal Rate Allocation 59 3.3.1 Rate Allocation Strategy 60 3.3.2 Optimal Storage Configuration 63 3.3.3 Experimental Results 71 Chapter 4 Quality-Adjustable Sensing 73 4.1 Compressive Sensing 73 4.1.1 Compressive Sensing Problem 74 4.1.2 General Signal Recovery 76 4.1.3 Noisy Signal Recovery 76 4.2 Quality Adjustability in Sensing Environment 77 4.2.1 Quantization and Temporal Downsampling 79 4.2.2 Optimization with Error Model 85 4.3 Low-Complexity Sensing 88 4.3.1 Sparse Random Matrix 89 4.3.2 Resource Savings 92 Chapter 5 Conclusions 96 5.1 Summary 96 5.2 Future Research Directions 98 Bibliography 100 Abstract in Korean 109Docto
    corecore