43,170 research outputs found

    Rare event simulation via importance sampling for linear SPDE's

    Full text link
    The goal of this paper is to develop provably efficient importance sampling Monte Carlo methods for the estimation of rare events within the class of linear stochastic partial differential equations (SPDEs). We find that if a spectral gap of appropriate size exists, then one can identify a lower dimensional manifold where the rare event takes place. This allows one to build importance sampling changes of measures that perform provably well even pre-asymptotically (i.e. for small but non-zero size of the noise) without degrading in performance due to infinite dimensionality or due to long simulation time horizons. Simulation studies supplement and illustrate the theoretical results.Accepted manuscrip

    Multivariate Hawkes Processes for Large-scale Inference

    Full text link
    In this paper, we present a framework for fitting multivariate Hawkes processes for large-scale problems both in the number of events in the observed history nn and the number of event types dd (i.e. dimensions). The proposed Low-Rank Hawkes Process (LRHP) framework introduces a low-rank approximation of the kernel matrix that allows to perform the nonparametric learning of the d2d^2 triggering kernels using at most O(ndr2)O(ndr^2) operations, where rr is the rank of the approximation (r≪d,nr \ll d,n). This comes as a major improvement to the existing state-of-the-art inference algorithms that are in O(nd2)O(nd^2). Furthermore, the low-rank approximation allows LRHP to learn representative patterns of interaction between event types, which may be valuable for the analysis of such complex processes in real world datasets. The efficiency and scalability of our approach is illustrated with numerical experiments on simulated as well as real datasets.Comment: 16 pages, 5 figure
    • …
    corecore