12,438 research outputs found

    Condensation of degrees emerging through a first-order phase transition in classical random graphs

    Get PDF
    Due to their conceptual and mathematical simplicity, Erd\"os-R\'enyi or classical random graphs remain as a fundamental paradigm to model complex interacting systems in several areas. Although condensation phenomena have been widely considered in complex network theory, the condensation of degrees has hitherto eluded a careful study. Here we show that the degree statistics of the classical random graph model undergoes a first-order phase transition between a Poisson-like distribution and a condensed phase, the latter characterized by a large fraction of nodes having degrees in a limited sector of their configuration space. The mechanism underlying the first-order transition is discussed in light of standard concepts in statistical physics. We uncover the phase diagram characterizing the ensemble space of the model and we evaluate the rate function governing the probability to observe a condensed state, which shows that condensation of degrees is a rare statistical event akin to similar condensation phenomena recently observed in several other systems. Monte Carlo simulations confirm the exactness of our theoretical results.Comment: 8 pages, 6 figure

    Local Tomography of Large Networks under the Low-Observability Regime

    Full text link
    This article studies the problem of reconstructing the topology of a network of interacting agents via observations of the state-evolution of the agents. We focus on the large-scale network setting with the additional constraint of partialpartial observations, where only a small fraction of the agents can be feasibly observed. The goal is to infer the underlying subnetwork of interactions and we refer to this problem as locallocal tomographytomography. In order to study the large-scale setting, we adopt a proper stochastic formulation where the unobserved part of the network is modeled as an Erd\"{o}s-R\'enyi random graph, while the observable subnetwork is left arbitrary. The main result of this work is establishing that, under this setting, local tomography is actually possible with high probability, provided that certain conditions on the network model are met (such as stability and symmetry of the network combination matrix). Remarkably, such conclusion is established under the lowlow-observabilityobservability regimeregime, where the cardinality of the observable subnetwork is fixed, while the size of the overall network scales to infinity.Comment: To appear in IEEE Transactions on Information Theor
    • …
    corecore