20,326 research outputs found

    Early Warning Analysis for Social Diffusion Events

    Get PDF
    There is considerable interest in developing predictive capabilities for social diffusion processes, for instance to permit early identification of emerging contentious situations, rapid detection of disease outbreaks, or accurate forecasting of the ultimate reach of potentially viral ideas or behaviors. This paper proposes a new approach to this predictive analytics problem, in which analysis of meso-scale network dynamics is leveraged to generate useful predictions for complex social phenomena. We begin by deriving a stochastic hybrid dynamical systems (S-HDS) model for diffusion processes taking place over social networks with realistic topologies; this modeling approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathematical formalism with which to represent complex, multi-scale biological network dynamics. We then perform formal stochastic reachability analysis with this S-HDS model and conclude that the outcomes of social diffusion processes may depend crucially upon the way the early dynamics of the process interacts with the underlying network's community structure and core-periphery structure. This theoretical finding provides the foundations for developing a machine learning algorithm that enables accurate early warning analysis for social diffusion events. The utility of the warning algorithm, and the power of network-based predictive metrics, are demonstrated through an empirical investigation of the propagation of political memes over social media networks. Additionally, we illustrate the potential of the approach for security informatics applications through case studies involving early warning analysis of large-scale protests events and politically-motivated cyber attacks

    Multiple Loop Self-Triggered Model Predictive Control for Network Scheduling and Control

    Full text link
    We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instant not only the new control command for a process, but also decides the time interval to wait until taking the next sample. The approach relies on model predictive control ideas, where the cost function penalizes the state and control effort as well as the time interval until the next sample is taken. The latter is introduced in order to generate an adaptive sampling scheme for the overall system such that the sampling time increases as the norm of the system state goes to zero. The paper presents a method for synthesizing such a predictive controller and gives explicit sufficient conditions for when it is stabilizing. Further explicit conditions are given which guarantee conflict free transmissions on the network. It is shown that the optimization problem may be solved off-line and that the controller can be implemented as a lookup table of state feedback gains. Simulation studies which compare the proposed algorithm to periodic sampling illustrate potential performance gains.Comment: Accepted for publication in IEEE Transactions on Control Systems Technolog

    A tug-of-war between driver and passenger mutations in cancer and other adaptive processes

    Get PDF
    Cancer progression is an example of a rapid adaptive process where evolving new traits is essential for survival and requires a high mutation rate. Precancerous cells acquire a few key mutations that drive rapid population growth and carcinogenesis. Cancer genomics demonstrates that these few 'driver' mutations occur alongside thousands of random 'passenger' mutations-a natural consequence of cancer's elevated mutation rate. Some passengers can be deleterious to cancer cells, yet have been largely ignored in cancer research. In population genetics, however, the accumulation of mildly deleterious mutations has been shown to cause population meltdown. Here we develop a stochastic population model where beneficial drivers engage in a tug-of-war with frequent mildly deleterious passengers. These passengers present a barrier to cancer progression that is described by a critical population size, below which most lesions fail to progress, and a critical mutation rate, above which cancers meltdown. We find support for the model in cancer age-incidence and cancer genomics data that also allow us to estimate the fitness advantage of drivers and fitness costs of passengers. We identify two regimes of adaptive evolutionary dynamics and use these regimes to rationalize successes and failures of different treatment strategies. We find that a tumor's load of deleterious passengers can explain previously paradoxical treatment outcomes and suggest that it could potentially serve as a biomarker of response to mutagenic therapies. Collective deleterious effect of passengers is currently an unexploited therapeutic target. We discuss how their effects might be exacerbated by both current and future therapies

    A nonparametric Bayesian approach to the rare type match problem

    Full text link
    The "rare type match problem" is the situation in which the suspect's DNA profile, matching the DNA profile of the crime stain, is not in the database of reference. The evaluation of this match in the light of the two competing hypotheses (the crime stain has been left by the suspect or by another person) is based on the calculation of the likelihood ratio and depends on the population proportions of the DNA profiles, that are unknown. We propose a Bayesian nonparametric method that uses a two-parameter Poisson Dirichlet distribution as a prior over the ranked population proportions, and discards the information about the names of the different DNA profiles. This fits very well the data coming from European Y-STR DNA profiles, and the calculation of the likelihood ratio becomes quite simple thanks to a justified Empirical Bayes approach.Comment: arXiv admin note: text overlap with arXiv:1506.0844

    A Cluster Based Model to Enhance Acceptance of New Energy Driven Technologies

    Get PDF
    Resistance against new innovative technologies by customers has been studied in many publications to improve prediction of behavior. Econometrics models, the Technology Acceptance Model by Fred D. Davis (1989), and market research models are the most widely used modeling techniques to predict and understand customer behaviors. The proposed methodology in this paper advances current models by relaxing many of their assumptions and increasing prediction accuracy. A case study in predicting hybrid car buyer behaviors is performed to illustrate and validate the suggested modeling method named as the Energy Efficiency Technology Acceptance Model
    corecore