10,517 research outputs found

    Software Evolution Approach for the Development of Command and Control Systems

    Get PDF
    2000 Command and Control Research and Technology Symposium (CCRTS), June 11-13, 2000, Naval Postgraduate School, Monterey, CAThis paper addresses the problem of how to produce reliable software that is also flexible and cost effective for the DoD distributed software domain. DoD software systems fall into two categories: information systems and war fighter systems. Both types of systems can be distributed, heterogeneous and network-based, consisting of a set of components running on different platforms and working together via multiple communication links and protocols. We propose to tackle the problem using prototyping and a “wrapper and glue” technology for interoperability and integration. This paper describes a distributed development environment, CAPS (Computer- Aided Prototyping System), to support rapid prototyping and automatic generation of wrapper and glue software based on designer specifications. The CAPS system uses a fifth-generation prototyping language to model the communication structure, timing constraints, I/O control, and data buffering that comprise the requirements for an embedded software system. The language supports the specification of hard real-time systems with reusable components from domain specific component libraries. CAPS has been used successfully as a research tool in prototyping large war-fighter control systems (e.g. the command-and-control station, cruise missile flight control system, missile defense systems) and demonstrated its capability to support the development of large complex embedded software.This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and 40473-MA

    HERO: Heterogeneous Embedded Research Platform for Exploring RISC-V Manycore Accelerators on FPGA

    Full text link
    Heterogeneous embedded systems on chip (HESoCs) co-integrate a standard host processor with programmable manycore accelerators (PMCAs) to combine general-purpose computing with domain-specific, efficient processing capabilities. While leading companies successfully advance their HESoC products, research lags behind due to the challenges of building a prototyping platform that unites an industry-standard host processor with an open research PMCA architecture. In this work we introduce HERO, an FPGA-based research platform that combines a PMCA composed of clusters of RISC-V cores, implemented as soft cores on an FPGA fabric, with a hard ARM Cortex-A multicore host processor. The PMCA architecture mapped on the FPGA is silicon-proven, scalable, configurable, and fully modifiable. HERO includes a complete software stack that consists of a heterogeneous cross-compilation toolchain with support for OpenMP accelerator programming, a Linux driver, and runtime libraries for both host and PMCA. HERO is designed to facilitate rapid exploration on all software and hardware layers: run-time behavior can be accurately analyzed by tracing events, and modifications can be validated through fully automated hard ware and software builds and executed tests. We demonstrate the usefulness of HERO by means of case studies from our research

    Slisp: A Flexible Software Toolkit for Hybrid, Embedded and Distributed Applications

    Get PDF
    We describe Slisp (pronounced ‘Ess-Lisp’), a hybrid Lisp–C programming toolkit for the development of scriptable and distributed applications. Computationally expensive operations implemented as separate C-coded modules are selectively compiled into a small Xlisp interpreter, then called as Lisp functions in a Lisp-coded program. The resulting hybrid program may run in several modes: as a stand-alone executable, embedded in a different C program, as a networked server accessed from another Slisp client, or as a networked server accessed from a C-coded client. Five years of experience with Slisp, as well experience with other scripting languages such as Tcl and Perl, are summarized. These experiences suggest that Slisp will be most useful for mid-sized applications in which the kinds of scripting and embeddability features provided by Tcl and Perl can be extended in an efïŹcient manner to larger applications, while maintaining a well-deïŹned standard (Common Lisp) for these extensions. In addition, the generality of Lisp makes Lisp a good candidate for an application-level communication language in distributed environments

    Building distributed sensor network applications using BIP

    No full text
    International audienceThe exponential increase in the demands for the deployment of large-scale sensor networks, makes the efficient development of functional applications necessary. Nevertheless, the existence of scarce resources and the derived application complexity, impose significant constraints and requires high design expertise. Consequently, the probability of discovering design errors, once the application is implemented, is considerably high. To address these issues, there is a need for the availability of early-stage validation, performance evaluation and rapid prototyping techniques at design time. In this paper we present a novel approach for the co-design of mixed software/hardware applications for distributed sensor network systems. This approach uses BIP, a formal framework facilitating modeling, analysis and implementation of real-time embedded, heterogeneous systems. Our approach is illustrated through the modeling and deployment of a Wireless Multimedia Sensor Network (WMSN) application. We emphasize on its merits, notably validation of functional and non-functional requirements through statistical model-checking and automatic code generation for sensor network platforms

    Unified radio and network control across heterogeneous hardware platforms

    Get PDF
    Experimentation is an important step in the investigation of techniques for handling spectrum scarcity or the development of new waveforms in future wireless networks. However, it is impractical and not cost effective to construct custom platforms for each future network scenario to be investigated. This problem is addressed by defining Unified Programming Interfaces that allow common access to several platforms for experimentation-based prototyping, research, and development purposes. The design of these interfaces is driven by a diverse set of scenarios that capture the functionality relevant to future network implementations while trying to keep them as generic as possible. Herein, the definition of this set of scenarios is presented as well as the architecture for supporting experimentation-based wireless research over multiple hardware platforms. The proposed architecture for experimentation incorporates both local and global unified interfaces to control any aspect of a wireless system while being completely agnostic to the actual technology incorporated. Control is feasible from the low-level features of individual radios to the entire network stack, including hierarchical control combinations. A testbed to enable the use of the above architecture is utilized that uses a backbone network in order to be able to extract measurements and observe the overall behaviour of the system under test without imposing further communication overhead to the actual experiment. Based on the aforementioned architecture, a system is proposed that is able to support the advancement of intelligent techniques for future networks through experimentation while decoupling promising algorithms and techniques from the capabilities of a specific hardware platform

    TANGO: Transparent heterogeneous hardware Architecture deployment for eNergy Gain in Operation

    Get PDF
    The paper is concerned with the issue of how software systems actually use Heterogeneous Parallel Architectures (HPAs), with the goal of optimizing power consumption on these resources. It argues the need for novel methods and tools to support software developers aiming to optimise power consumption resulting from designing, developing, deploying and running software on HPAs, while maintaining other quality aspects of software to adequate and agreed levels. To do so, a reference architecture to support energy efficiency at application construction, deployment, and operation is discussed, as well as its implementation and evaluation plans.Comment: Part of the Program Transformation for Programmability in Heterogeneous Architectures (PROHA) workshop, Barcelona, Spain, 12th March 2016, 7 pages, LaTeX, 3 PNG figure
    • 

    corecore