2 research outputs found

    Rapid and accurate energy models through calibration with IPMI and RAPL

    Get PDF
    Energy consumption in Cloud and High Performance Computing platforms is a significant issue and affects aspects such as the cost of energy and the cooling of the data center. Host level monitoring and prediction provides the groundwork for improving energy efficiency through the placement of workloads. Monitoring must be fast and efficient without unnecessary overhead, to enable scalability. This precludes the use of Watt meters attached per host, requiring alternative approaches such as integrated measurements and models. IPMI and RAPL are subject to error and partial measurement, which may be mitigated. Models allow for prediction and more responsive measures of power consumption, but require calibrating. The causes of calibration error are discussed, along with mitigation strategies, without overly complicating the underlying model. An outcome is a Watt meter emulator that provides hosts level power measurement along with estimated power consumption for a given workload, with an average error of 0.20W

    Towards the Systematic Reporting of the Energy and Carbon Footprints of Machine Learning

    Full text link
    Accurate reporting of energy and carbon usage is essential for understanding the potential climate impacts of machine learning research. We introduce a framework that makes this easier by providing a simple interface for tracking realtime energy consumption and carbon emissions, as well as generating standardized online appendices. Utilizing this framework, we create a leaderboard for energy efficient reinforcement learning algorithms to incentivize responsible research in this area as an example for other areas of machine learning. Finally, based on case studies using our framework, we propose strategies for mitigation of carbon emissions and reduction of energy consumption. By making accounting easier, we hope to further the sustainable development of machine learning experiments and spur more research into energy efficient algorithms
    corecore