4 research outputs found

    Rapid feature space speaker adaptation for multi-stream hmm-based audio-visual speech recognition

    No full text
    Multi-stream hidden Markov models (HMMs) have recently been very successful in audio-visual speech recognition, where the audio and visual streams are fused at the final decision level. In this paper we investigate fast feature space speaker adaptation using multi-stream HMMs for audio-visual speech recognition. In particular, we focus on studying the performance of feature-space maximum likelihood linear regression (fMLLR), a fast and effective method for estimating feature space transforms. Unlike the common speaker adaptation techniques of MAP or MLLR, fM-LLR does not change the audio or visual HMM parameters, but simply applies a single transform to the testing features. We also address the problem of fast and robust on-line fMLLR adaptation using feature space maximum a posterior linear regression (fMAPLR). Adaptation experiments are reported on the IBM infrared headset audio-visual database. On average for a 20-speaker hour independent test set, the multi-stream fMLLR achieves £ relative gain on the clean audio condition, ¦¨§ and relative gain on the noisy audio condition (approximately 7dB) as compared to the baseline multi-stream system. 1

    A motion-based approach for audio-visual automatic speech recognition

    Get PDF
    The research work presented in this thesis introduces novel approaches for both visual region of interest extraction and visual feature extraction for use in audio-visual automatic speech recognition. In particular, the speaker‘s movement that occurs during speech is used to isolate the mouth region in video sequences and motionbased features obtained from this region are used to provide new visual features for audio-visual automatic speech recognition. The mouth region extraction approach proposed in this work is shown to give superior performance compared with existing colour-based lip segmentation methods. The new features are obtained from three separate representations of motion in the region of interest, namely the difference in luminance between successive images, block matching based motion vectors and optical flow. The new visual features are found to improve visual-only and audiovisual speech recognition performance when compared with the commonly-used appearance feature-based methods. In addition, a novel approach is proposed for visual feature extraction from either the discrete cosine transform or discrete wavelet transform representations of the mouth region of the speaker. In this work, the image transform is explored from a new viewpoint of data discrimination; in contrast to the more conventional data preservation viewpoint. The main findings of this work are that audio-visual automatic speech recognition systems using the new features extracted from the frequency bands selected according to their discriminatory abilities generally outperform those using features designed for data preservation. To establish the noise robustness of the new features proposed in this work, their performance has been studied in presence of a range of different types of noise and at various signal-to-noise ratios. In these experiments, the audio-visual automatic speech recognition systems based on the new approaches were found to give superior performance both to audio-visual systems using appearance based features and to audio-only speech recognition systems

    Probabilistic models for multi-view semi-supervised learning and coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 146-160).This thesis investigates the problem of classification from multiple noisy sensors or modalities. Examples include speech and gesture interfaces and multi-camera distributed sensor networks. Reliable recognition in such settings hinges upon the ability to learn accurate classification models in the face of limited supervision and to cope with the relatively large amount of potentially redundant information transmitted by each sensor or modality (i.e., view). We investigate and develop novel multi view learning algorithms capable of learning from semi-supervised noisy sensor data, for automatically adapting to new users and working conditions, and for performing distributed feature selection on bandwidth limited sensor networks. We propose probabilistic models built upon multi-view Gaussian Processes (GPs) for solving this class of problems, and demonstrate our approaches for solving audio-visual speech and gesture, and multi-view object classification problems. Multi-modal tasks are good candidates for multi-view learning, since each modality provides a potentially redundant view to the learning algorithm. On audio-visual speech unit classification, and user agreement recognition using spoken utterances and head gestures, we demonstrate that multi-modal co-training can be used to learn from only a few labeled examples in one or both of the audio-visual modalities. We also propose a co-adaptation algorithm, which adapts existing audio-visual classifiers to a particular user or noise condition by leveraging the redundancy in the unlabeled data. Existing methods typically assume constant per-channel noise models.(cont.) In contrast we develop co-training algorithms that are able to learn from noisy sensor data corrupted by complex per-sample noise processes, e.g., occlusion common to multi sensor classification problems. We propose a probabilistic heteroscedastic approach to co-training that simultaneously discovers the amount of noise on a per-sample basis, while solving the classification task. This results in accurate performance in the presence of occlusion or other complex noise processes. We also investigate an extension of this idea for supervised multi-view learning where we develop a Bayesian multiple kernel learning algorithm that can learn a local weighting over each view of the input space. We additionally consider the problem of distributed object recognition or indexing from multiple cameras, where the computational power available at each camera sensor is limited and communication between cameras is prohibitively expensive. In this scenario, it is desirable to avoid sending redundant visual features from multiple views. Traditional supervised feature selection approaches are inapplicable as the class label is unknown at each camera. In this thesis, we propose an unsupervised multi-view feature selection algorithm based on a distributed coding approach. With our method, a Gaussian Process model of the joint view statistics is used at the receiver to obtain a joint encoding of the views without directly sharing information across encoders. We demonstrate our approach on recognition and indexing tasks with multi-view image databases and show that our method compares favorably to an independent encoding of the features from each camera.by C. Mario Christoudias.Ph.D

    A motion based approach for audio-visual automatic speech recognition

    Get PDF
    The research work presented in this thesis introduces novel approaches for both visual region of interest extraction and visual feature extraction for use in audio-visual automatic speech recognition. In particular, the speaker‘s movement that occurs during speech is used to isolate the mouth region in video sequences and motionbased features obtained from this region are used to provide new visual features for audio-visual automatic speech recognition. The mouth region extraction approach proposed in this work is shown to give superior performance compared with existing colour-based lip segmentation methods. The new features are obtained from three separate representations of motion in the region of interest, namely the difference in luminance between successive images, block matching based motion vectors and optical flow. The new visual features are found to improve visual-only and audiovisual speech recognition performance when compared with the commonly-used appearance feature-based methods. In addition, a novel approach is proposed for visual feature extraction from either the discrete cosine transform or discrete wavelet transform representations of the mouth region of the speaker. In this work, the image transform is explored from a new viewpoint of data discrimination; in contrast to the more conventional data preservation viewpoint. The main findings of this work are that audio-visual automatic speech recognition systems using the new features extracted from the frequency bands selected according to their discriminatory abilities generally outperform those using features designed for data preservation. To establish the noise robustness of the new features proposed in this work, their performance has been studied in presence of a range of different types of noise and at various signal-to-noise ratios. In these experiments, the audio-visual automatic speech recognition systems based on the new approaches were found to give superior performance both to audio-visual systems using appearance based features and to audio-only speech recognition systems.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore