18,587 research outputs found

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    A Survey on Metric Learning for Feature Vectors and Structured Data

    Full text link
    The need for appropriate ways to measure the distance or similarity between data is ubiquitous in machine learning, pattern recognition and data mining, but handcrafting such good metrics for specific problems is generally difficult. This has led to the emergence of metric learning, which aims at automatically learning a metric from data and has attracted a lot of interest in machine learning and related fields for the past ten years. This survey paper proposes a systematic review of the metric learning literature, highlighting the pros and cons of each approach. We pay particular attention to Mahalanobis distance metric learning, a well-studied and successful framework, but additionally present a wide range of methods that have recently emerged as powerful alternatives, including nonlinear metric learning, similarity learning and local metric learning. Recent trends and extensions, such as semi-supervised metric learning, metric learning for histogram data and the derivation of generalization guarantees, are also covered. Finally, this survey addresses metric learning for structured data, in particular edit distance learning, and attempts to give an overview of the remaining challenges in metric learning for the years to come.Comment: Technical report, 59 pages. Changes in v2: fixed typos and improved presentation. Changes in v3: fixed typos. Changes in v4: fixed typos and new method

    Taming computational complexity: efficient and parallel SimRank optimizations on undirected graphs

    Get PDF
    SimRank has been considered as one of the promising link-based ranking algorithms to evaluate similarities of web documents in many modern search engines. In this paper, we investigate the optimization problem of SimRank similarity computation on undirected web graphs. We first present a novel algorithm to estimate the SimRank between vertices in O(n3+ Kn2) time, where n is the number of vertices, and K is the number of iterations. In comparison, the most efficient implementation of SimRank algorithm in [1] takes O(K n3 ) time in the worst case. To efficiently handle large-scale computations, we also propose a parallel implementation of the SimRank algorithm on multiple processors. The experimental evaluations on both synthetic and real-life data sets demonstrate the better computational time and parallel efficiency of our proposed techniques

    Solving the Cold-Start Problem in Recommender Systems with Social Tags

    Full text link
    In this paper, based on the user-tag-object tripartite graphs, we propose a recommendation algorithm, which considers social tags as an important role for information retrieval. Besides its low cost of computational time, the experiment results of two real-world data sets, \emph{Del.icio.us} and \emph{MovieLens}, show it can enhance the algorithmic accuracy and diversity. Especially, it can obtain more personalized recommendation results when users have diverse topics of tags. In addition, the numerical results on the dependence of algorithmic accuracy indicates that the proposed algorithm is particularly effective for small degree objects, which reminds us of the well-known \emph{cold-start} problem in recommender systems. Further empirical study shows that the proposed algorithm can significantly solve this problem in social tagging systems with heterogeneous object degree distributions
    corecore