6,147 research outputs found

    A new approach to robust fundamental matrix estimation using an analytic objective function and adjusted gradient projection

    Get PDF
    In this paper we propose a new approach to tackling the challenging problem of robust fundamental matrix estimation from corrupted correspondences. Compared with traditional robust methods, the proposed approach achieves enhanced estimation accuracy and stability. These achievements are attributed mainly to two novelties contributed by the new approach. Firstly, a new, more easily-solvable analytic objective function is proposed to well consider both the presence of correspondence outliers and the computational convenience. Secondly, an adjusted gradient projection method is developed to provide a more stable solver for robust estimation. Experimental results show that the proposed approach performs better than traditional robust methods RANSAC, MSAC, LMEDS and MLESAC, in particular when correspondences were seriously corrupted

    Stable Camera Motion Estimation Using Convex Programming

    Full text link
    We study the inverse problem of estimating n locations t1,...,tnt_1, ..., t_n (up to global scale, translation and negation) in RdR^d from noisy measurements of a subset of the (unsigned) pairwise lines that connect them, that is, from noisy measurements of ±(ti−tj)/∥ti−tj∥\pm (t_i - t_j)/\|t_i - t_j\| for some pairs (i,j) (where the signs are unknown). This problem is at the core of the structure from motion (SfM) problem in computer vision, where the tit_i's represent camera locations in R3R^3. The noiseless version of the problem, with exact line measurements, has been considered previously under the general title of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions that are clustered around a few locations. This sensitivity of the location estimates is a well-known problem in SfM, especially for large, irregular collections of images. In this paper we introduce a semidefinite programming (SDP) formulation, specially tailored to overcome the clustering phenomenon. We further identify the implications of parallel rigidity theory for the location estimation problem to be well-posed, and prove exact (in the noiseless case) and stable location recovery results. We also formulate an alternating direction method to solve the resulting semidefinite program, and provide a distributed version of our formulation for large numbers of locations. Specifically for the camera location estimation problem, we formulate a pairwise line estimation method based on robust camera orientation and subspace estimation. Lastly, we demonstrate the utility of our algorithm through experiments on real images.Comment: 40 pages, 12 figures, 6 tables; notation and some unclear parts updated, some typos correcte

    Maximum Likelihood for Matrices with Rank Constraints

    Full text link
    Maximum likelihood estimation is a fundamental optimization problem in statistics. We study this problem on manifolds of matrices with bounded rank. These represent mixtures of distributions of two independent discrete random variables. We determine the maximum likelihood degree for a range of determinantal varieties, and we apply numerical algebraic geometry to compute all critical points of their likelihood functions. This led to the discovery of maximum likelihood duality between matrices of complementary ranks, a result proved subsequently by Draisma and Rodriguez.Comment: 22 pages, 1 figur

    Robust Estimation of Motion Parameters and Scene Geometry : Minimal Solvers and Convexification of Regularisers for Low-Rank Approximation

    Get PDF
    In the dawning age of autonomous driving, accurate and robust tracking of vehicles is a quintessential part. This is inextricably linked with the problem of Simultaneous Localisation and Mapping (SLAM), in which one tries to determine the position of a vehicle relative to its surroundings without prior knowledge of them. The more you know about the object you wish to track—through sensors or mechanical construction—the more likely you are to get good positioning estimates. In the first part of this thesis, we explore new ways of improving positioning for vehicles travelling on a planar surface. This is done in several different ways: first, we generalise the work done for monocular vision to include two cameras, we propose ways of speeding up the estimation time with polynomial solvers, and we develop an auto-calibration method to cope with radially distorted images, without enforcing pre-calibration procedures.We continue to investigate the case of constrained motion—this time using auxiliary data from inertial measurement units (IMUs) to improve positioning of unmanned aerial vehicles (UAVs). The proposed methods improve the state-of-the-art for partially calibrated cases (with unknown focal length) for indoor navigation. Furthermore, we propose the first-ever real-time compatible minimal solver for simultaneous estimation of radial distortion profile, focal length, and motion parameters while utilising the IMU data.In the third and final part of this thesis, we develop a bilinear framework for low-rank regularisation, with global optimality guarantees under certain conditions. We also show equivalence between the linear and the bilinear framework, in the sense that the objectives are equal. This enables users of alternating direction method of multipliers (ADMM)—or other subgradient or splitting methods—to transition to the new framework, while being able to enjoy the benefits of second order methods. Furthermore, we propose a novel regulariser fusing two popular methods. This way we are able to combine the best of two worlds by encouraging bias reduction while enforcing low-rank solutions

    Numerical algebraic geometry approach to polynomial optimization, The

    Get PDF
    2017 Summer.Includes bibliographical references.Numerical algebraic geometry (NAG) consists of a collection of numerical algorithms, based on homotopy continuation, to approximate the solution sets of systems of polynomial equations arising from applications in science and engineering. This research focused on finding global solutions to constrained polynomial optimization problems of moderate size using NAG methods. The benefit of employing a NAG approach to nonlinear optimization problems is that every critical point of the objective function is obtained with probability-one. The NAG approach to global optimization aims to reduce computational complexity during path tracking by exploiting structure that arises from the corresponding polynomial systems. This thesis will consider applications to systems biology and life sciences where polynomials solve problems in model compatibility, model selection, and parameter estimation. Furthermore, these techniques produce mathematical models of large data sets on non-euclidean manifolds such as a disjoint union of Grassmannians. These methods will also play a role in analyzing the performance of existing local methods for solving polynomial optimization problems

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc
    • …
    corecore