5 research outputs found

    Formal Solutions of a Class of Pfaffian Systems in Two Variables

    Full text link
    In this paper, we present an algorithm which computes a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in two variables, based on (Barkatou, 1997). A first step was set in (Barkatou-LeRoux, 2006) where the problem of rank reduction was tackled via the approach of (Levelt, 1991). We give instead a Moser-based approach. And, as a complementary step, we associate to our problem a system of ordinary linear singular differential equations from which the formal invariants can be efficiently derived via the package ISOLDE, implemented in the computer algebra system Maple.Comment: Keywords: Linear systems of partial differential equations, Pfaffian systems, Formal solutions, Moser-based reduction, Hukuhara- Turritin normal for

    On the Reduction of Singularly-Perturbed Linear Differential Systems

    Full text link
    In this article, we recover singularly-perturbed linear differential systems from their turning points and reduce the rank of the singularity in the parameter to its minimal integer value. Our treatment is Moser-based; that is to say it is based on the reduction criterion introduced for linear singular differential systems by Moser. Such algorithms have proved their utility in the symbolic resolution of the systems of linear functional equations, giving rise to the package ISOLDE, as well as in the perturbed algebraic eigenvalue problem. Our algorithm, implemented in the computer algebra system Maple, paves the way for efficient symbolic resolution of singularly-perturbed linear differential systems as well as further applications of Moser-based reduction over bivariate (differential) fields.Comment: Keywords: Moser-based Reduction, Perturbed linear Differential systems, turning points, Computer algebr

    Black Hole Scattering from Monodromy

    Full text link
    We study scattering coefficients in black hole spacetimes using analytic properties of complexified wave equations. For a concrete example, we analyze the singularities of the Teukolsky equation and relate the corresponding monodromies to scattering data. These techniques, valid in full generality, provide insights into complex-analytic properties of greybody factors and quasinormal modes. This leads to new perturbative and numerical methods which are in good agreement with previous results.Comment: 28 pages + appendices, 2 figures. For Mathematica calculation of Stokes multipliers, download "StokesNotebook" from https://sites.google.com/site/justblackholes/techy-zon

    Formal Solutions of Completely Integrable {Pfaffian} Systems With Normal Crossings

    No full text
    In this paper, we present an algorithm for computing a fundamental matrix of formal solutions of completely integrable Pfaffian systems with normal crossings in several variables. This algorithm is a generalization of a method developed for the bivariate case based on a combination of several reduction techniques and is implemented in the computer algebra system Maple
    corecore