2,520 research outputs found

    Scalable Boolean Tensor Factorizations using Random Walks

    Full text link
    Tensors are becoming increasingly common in data mining, and consequently, tensor factorizations are becoming more and more important tools for data miners. When the data is binary, it is natural to ask if we can factorize it into binary factors while simultaneously making sure that the reconstructed tensor is still binary. Such factorizations, called Boolean tensor factorizations, can provide improved interpretability and find Boolean structure that is hard to express using normal factorizations. Unfortunately the algorithms for computing Boolean tensor factorizations do not usually scale well. In this paper we present a novel algorithm for finding Boolean CP and Tucker decompositions of large and sparse binary tensors. In our experimental evaluation we show that our algorithm can handle large tensors and accurately reconstructs the latent Boolean structure

    Nonnegative Matrix Underapproximation for Robust Multiple Model Fitting

    Full text link
    In this work, we introduce a highly efficient algorithm to address the nonnegative matrix underapproximation (NMU) problem, i.e., nonnegative matrix factorization (NMF) with an additional underapproximation constraint. NMU results are interesting as, compared to traditional NMF, they present additional sparsity and part-based behavior, explaining unique data features. To show these features in practice, we first present an application to the analysis of climate data. We then present an NMU-based algorithm to robustly fit multiple parametric models to a dataset. The proposed approach delivers state-of-the-art results for the estimation of multiple fundamental matrices and homographies, outperforming other alternatives in the literature and exemplifying the use of efficient NMU computations

    Sparse and Unique Nonnegative Matrix Factorization Through Data Preprocessing

    Full text link
    Nonnegative matrix factorization (NMF) has become a very popular technique in machine learning because it automatically extracts meaningful features through a sparse and part-based representation. However, NMF has the drawback of being highly ill-posed, that is, there typically exist many different but equivalent factorizations. In this paper, we introduce a completely new way to obtaining more well-posed NMF problems whose solutions are sparser. Our technique is based on the preprocessing of the nonnegative input data matrix, and relies on the theory of M-matrices and the geometric interpretation of NMF. This approach provably leads to optimal and sparse solutions under the separability assumption of Donoho and Stodden (NIPS, 2003), and, for rank-three matrices, makes the number of exact factorizations finite. We illustrate the effectiveness of our technique on several image datasets.Comment: 34 pages, 11 figure
    corecore