4 research outputs found

    QuickSel: Quick Selectivity Learning with Mixture Models

    Full text link
    Estimating the selectivity of a query is a key step in almost any cost-based query optimizer. Most of today's databases rely on histograms or samples that are periodically refreshed by re-scanning the data as the underlying data changes. Since frequent scans are costly, these statistics are often stale and lead to poor selectivity estimates. As an alternative to scans, query-driven histograms have been proposed, which refine the histograms based on the actual selectivities of the observed queries. Unfortunately, these approaches are either too costly to use in practice---i.e., require an exponential number of buckets---or quickly lose their advantage as they observe more queries. In this paper, we propose a selectivity learning framework, called QuickSel, which falls into the query-driven paradigm but does not use histograms. Instead, it builds an internal model of the underlying data, which can be refined significantly faster (e.g., only 1.9 milliseconds for 300 queries). This fast refinement allows QuickSel to continuously learn from each query and yield increasingly more accurate selectivity estimates over time. Unlike query-driven histograms, QuickSel relies on a mixture model and a new optimization algorithm for training its model. Our extensive experiments on two real-world datasets confirm that, given the same target accuracy, QuickSel is 34.0x-179.4x faster than state-of-the-art query-driven histograms, including ISOMER and STHoles. Further, given the same space budget, QuickSel is 26.8%-91.8% more accurate than periodically-updated histograms and samples, respectively

    Histogram techniques for cost estimation in query optimization.

    Get PDF
    Yu Xiaohui.Thesis (M.Phil.)--Chinese University of Hong Kong, 2001.Includes bibliographical references (leaves 98-115).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 2 --- Related Work --- p.6Chapter 2.1 --- Query Optimization --- p.6Chapter 2.2 --- Query Rewriting --- p.8Chapter 2.2.1 --- Optimizing Multi-Block Queries --- p.8Chapter 2.2.2 --- Semantic Query Optimization --- p.13Chapter 2.2.3 --- Query Rewriting in Starburst --- p.15Chapter 2.3 --- Plan Generation --- p.16Chapter 2.3.1 --- Dynamic Programming Approach --- p.16Chapter 2.3.2 --- Join Query Processing --- p.17Chapter 2.3.3 --- Queries with Aggregates --- p.23Chapter 2.4 --- Statistics and Cost Estimation --- p.24Chapter 2.5 --- Histogram Techniques --- p.27Chapter 2.5.1 --- Definitions --- p.28Chapter 2.5.2 --- Trivial Histograms --- p.29Chapter 2.5.3 --- Heuristic-based Histograms --- p.29Chapter 2.5.4 --- V-Optimal Histograms --- p.32Chapter 2.5.5 --- Wavelet-based Histograms --- p.35Chapter 2.5.6 --- Multidimensional Histograms --- p.35Chapter 2.5.7 --- Global Histograms --- p.37Chapter 3 --- New Histogram Techniques --- p.39Chapter 3.1 --- Piecewise Linear Histograms --- p.39Chapter 3.1.1 --- Construction --- p.41Chapter 3.1.2 --- Usage --- p.43Chapter 3.1.3 --- Error Measures --- p.43Chapter 3.1.4 --- Experiments --- p.45Chapter 3.1.5 --- Conclusion --- p.51Chapter 3.2 --- A-Optimal Histograms --- p.54Chapter 3.2.1 --- A-Optimal(mean) Histograms --- p.56Chapter 3.2.2 --- A-Optimal(median) Histograms --- p.58Chapter 3.2.3 --- A-Optimal(median-cf) Histograms --- p.59Chapter 3.2.4 --- Experiments --- p.60Chapter 4 --- Global Histograms --- p.64Chapter 4.1 --- Wavelet-based Global Histograms --- p.65Chapter 4.1.1 --- Wavelet-based Global Histograms I --- p.66Chapter 4.1.2 --- Wavelet-based Global Histograms II --- p.68Chapter 4.2 --- Piecewise Linear Global Histograms --- p.70Chapter 4.3 --- A-Optimal Global Histograms --- p.72Chapter 4.3.1 --- Experiments --- p.74Chapter 5 --- Dynamic Maintenance --- p.81Chapter 5.1 --- Problem Definition --- p.83Chapter 5.2 --- Refining Bucket Coefficients --- p.84Chapter 5.3 --- Restructuring --- p.86Chapter 5.4 --- Experiments --- p.91Chapter 6 --- Conclusions --- p.95Bibliography --- p.9
    corecore