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Abstract 

Query optimization is one of the most important tasks of Relational Database 

Management Systems (RDBMSs). A typical query optimizer estimates the 

cost of various execution plans for a given query, and selects the one with the 

lowest cost. The accuracy of cost estimation is crucial in that it directly affects 

the quality of the decisions made by query optimizers. Seletivity estimation 

is an important part of cost estimation. Many commercial DBMSs maintain 

histograms to summarize the contents of relations in order to perform efficient 

selectivity estimations. 

In this thesis, we review the various existing histogram techniques, and 

identify their virtues and drawbacks. Based on these observations, we propose 

two new types of histograms: the piecewise linear histogram and the A-Optimal 

histogram. The piecewise linear histogram is built by first partitioning the 

value set into buckets according to some heuristic, and then approximating 

the frequencies inside each bucket with linear least squares regression. We 

show by expriements that the piecewise linear histogram outperforms other 

leading histogram techniques in a variety of settings. A-Optimal is proposed 

as an alternative to the previously proposed V-Optimal histogram. It is aimed 

at minimizing the average absolute error of the approximation. We develop 

three variants for the A-Optimal histogram. Experiements show that they 

perform better than the V-Optimal histogram in many cases. 

We also consider the problem of building global histograms. By adaptively 

allocate the given storage space to individual histograms according to their 
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skewness, we can reduce the overall estimation error, three kinds of global his-

tograms are developed in this thesis: wavelet-based global histograms, piece-

wise linear global histograms, and A-Optimal global histograms. We conduct 

experiments to compare their performances. 

Finally, we address the dynamic maintenance of histograms. We propose an 

efficient maintenance method for the piecewise linear histogram based on the 

probabilistic counting technique. We show by experiments that our method 

performs better than other alternative approaches. 
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查詢優化中代價評估的直方圖方法 

作者：禹曉輝 

查詢優化是關聯資料庫管理系統所要執行的主要任務之一。對於一個給定的 

查詢，典型的查詢優化器評估多種不同的執行方案的代價，然後從中選擇一種代 

價 小的方案。代價評估非常重要，因爲它的精確程度直接影響到查詢優化器所 

做決定的好壞。選擇度評估是代價評估中的重要一環。很多商用資料庫管理系統 

通過維護直方圖來槪括關係中的內容’以進行有效的選擇度評估。 

在本文中，我們回顧了現存的各種直方圖方法，並指出了它們的優缺點。在 

此基礎上，我們提出了兩種新的直方圖方法：分段線性直方圖和A- 優直方圖。 

構建分段線性直方圖的方法是：首先根據某種啓發式規則將値集劃分成若干段， 

然後用線性 小平方回歸來近似每個段內的頻率fio我們通過實驗說明在多種不 

同的實驗條件下，分段線性直方圖優於現有的各種直方圖方法。A- 優直方圖是 

作爲V- 優直方圖的一個替代方法提出的。它的目標是 小化直方圖近似的平 ’ 

均 小偏差。我們提出了這種直方圖方法的三個變種。實驗表明在多種情況下， 

A- 優直方圖方法優於V- 優直方圖方法。 

我們還考慮了構建全局直方圖的問題。如果我們根據不同屬性資料分佈的偏 

度來給它們對應的直方圖分配不同的存儲空間，我們就可以減小總體的評估誤 

差。本文提出了三種全局直方圖方法：基於小波的全局直方圖，分段線性全局直 

方圖和A- 優全局直方圖。我們通過實驗來比較這幾種方法的性能。 

後，我們硏究了直方圖的動態維護問題。Sf於分段線性直方圖，我們提出 

了一種基於槪率計數的高效維護方法。實驗證明我們提出的方法優於其他的方 

法。 
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Chapter 1 

Introduction 

Query evaluation is probably one of the most important tasks of a database 

system. The importance of answering queries efficiently can not be overempha-

sized, as in today's large database applications, a common query may take sev-

eral days long or only a few seconds to evaluate, just depending on how smart 

the database engine is. More specifically, the efficiency of query evaluation 

largely depends on the quality of the underlying query optimizer. Enhancing 

and improving the query optimizer has been a constant concern of database 

researchers for nearly 20 years, and the research in this area has gained much 

attention in recent years [12]. 

To put it simply, what a query optimizer do is to pick an efficient execution 

plan for a query. In relational database systems, users specify what information 

is needed, but do not describe how this information should be retrieved by the 

DBMS. While this simplifies the job of a user, it leaves to the DBMS the 

responsibility of identifying an efficient execution strategy [execution plan) 

among the different ways to execute a query, which differs in the indexes used, 

the order in which various operators are executed, and so on. Most non-trivial 

queries have a large number of plans, which are equivalent in their final output 

but vary vastly in their costs, e.g., the amount of time that they need to run. As 

a result, the DBMS needs to perform highly complex optimizations in picking a 

plan, which may not be practical for a human to perform. Hence most DBMSs 
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Chapter 1 Introduction 厂） 

have a component called the query optimizer to perform this operation. 

Most commercial query optimizers belong to the class of cost-based optimiz-

ers. In principle, a cost-based query optimizer enumerates a set of equivalent 

plans for the submitted query (typically based on a dynamic programming 

strategy [93]), and selects the plan with the least cost (the optimal plan) for 

execution. The most common metric chosen for for cost is the time taken for 

completely executing a query. In general, accurately computing the cost of a 

plan will require actually running the plan. Clearly, it is highly impractical 

to follow this strategy for the large number of plans generated in a query op-

timizer. Hence, most DBMS's use some form of statistics on the underlying 

data, such as the number of tuples, the number of values, the distribution of 

values, the correlation between value sets, and the distribution of tuples among 

secondary storage units, in order to estimate the cost of a query plan approx-

imately but efficiently. Since these statistics are used to provide approximate 

estimates query costs, the validity of the optimizer's decisions may be affected. 

This is an extremely important issue for query optimization because cost of 

plans can differ considerably and choosing a suboptimal plan can result in 

severe performance degradation. 

One important aspect of cost estimation is selectivity estimation, which is 

concerned with estimating the percentage of tuples in the table that satisfy a 

given query. The selectivity of a query depends on the data distribution of the 

underlying data in the database. For this purpose, most DBMSs maintain or 

dynamically compute the data distribution of attributes approximately and use 

this information in computing the selectivity and then the costs of the queries. 

The earliest example of such statistics is the uniformity assumption made in 

System-R, where the distribution of an attribute is approximated by a uniform 

distribution - all attribute values between the lowest and highest values in the 

attribute are assumed to have the same frequency, which is equal to the average 

of the frequencies. Earlier work has shown that errors in query result size 
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estimates based on the uniformity assumption may increase exponentially with 

the number of joins in the query [48]. As a result, the plan costs are estimated 

inaccurately and the optimizer will often end up picking a suboptimal plan for 

large queries. In fact, many commercial systems encounter this situation in 

real-life use and have started using more extensive statistical information about 

the underlying data. Several techniques have been proposed in the literature 

to estimate query result size [69], including histograms [57], sampling [66, 37], 

and parametric techniques [14, 104 . 

Of all those techniques, histograms are the most commonly used form of 

statistics in practice (e.g., they are used in DB2, Informix, Ingres, Oracle, 

Microsoft SQL Server, Sybase). They approximate the data distribution of 

an attribute by grouping attribute values into "buckets" (subsets) and ap-

proximating true attribute values and their frequencies in the data based on 

summary statistics maintained in each bucket. The advantage of histograms 

over other techniques are that they incur almost no run-time overhead, they do 

not require the data to fit a probability distribution or a polynomial and, for 

most real-world databases, there exist histograms that produce low-error esti-

mates while occupying reasonably small space (of the order of a few hundred 

bytes in a catalog). Hence they have gained much popularity in commercial 

systems and are the focus of this paper. 

Various kinds of histograms have been proposed, e.g., equi-width histograms, 

equi-depth histograms, compressed histograms, V-Optimal histograms [88], 

and the recently proposed wavelet-based histograms. In this thesis, we investi-

gate the accuracy of those histograms as well as their construction, usage and 

maintenance efficiency. Our study reveals that no existing histogram technique 

is perfect in all aspects. 

The contributions of this thesis are in three aspects as summarized below. 

New Histogram Techniques We introduce a new kind of histogram 
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called piecewise linear histogram based on the well-known piecewise linear re-

gression techniques for selectivity estimation. We show that this method offers 

improvements in accuracy and efficiency over existing methods. 

We also propose another new sort of histogram called a_optimal histogram 

which is similar to V-Optimal histogram, but use average absolute error in-

stead of average square error as the object error function for optimization. As 

average absolute error is commonly used as a error metric for selectivity esti-

mation in the literature, our method provides a good alternative to V-Optimal 

histograms. 

Global Histograms We study the problem of how to allocate a given 

limited storage space to different attributes/histograms in a database. [51] first 

proposed the idea of global optimization of histograms over multiple attributes. 

However, the global optimal histogram introduced in [51] incurs a high cost to 

construct and hard to maintain, thus is not suitable for practical use. In this 

thesis, we propose three new methods to construct global histograms based 

on (single attribute) wavelet-based histograms, piecewise linear histograms, 

and a-optimal histograms respectively. We show that the former two methods 

are much more efficient than the original global optimal histograms in [51 

with a tolerable sacrifice in accuracy. The a-optimal global histogram is an 

alternative to the V-Optimal global histogram in [51], and outperforms the 

V-Optimal global histogram in accuracy when measurement is made in terms 

of certain well-accepted error metrics. 

Histogram Maintenance Since the data in a database system may be 

frequently updated, the efficiency of maintenance of histograms is of critical 

importance. To this end, we propose a dynamic maintenance algorithm for 

our proposed piecewise linear histograms. Compared with wavelet-based his-

tograms, the piecewise linear histograms incurs lower maintenance cost, while 

still provide higher accuracy for selectivity estimation. 
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This thesis is organized as follows. In Chapter 2, we briefly review previ-

ous work in query optimization, especially in histogram techniques. Chapter 

3 introduces the construction and usage of piecewise linear histograms and 

A-Optimal histograms. In Chapter 4, we introduce wavelet-based global his-

tograms, piecewise linear global histograms, and A-Optimal global histograms 

and compare their performance. In Chapter 5, we propose an efficient algo-

rithm for the dynamic maintenance of piecewise linear histograms. Chapter 6 

concludes this thesis. 



Chapter 2 

Related Work 

This chapter describes some of the work related to the research in this thesis. 

We first give an overview of the research in the field of query optimization, 

then we focus on the problem of cost estimation and discuss various existing 

histogram techniques. 

2.1 Query Optimization 

Users interact with a database by issuing queries against the database tables. 

A relational database management system (RDBMS) handle such queries with 

query optimizer that does query optimization, and then with the query exe-

cution engine which carries out the query and produce the result that will be 

presented to the user. As mentioned in the previous chapter, query optimiza-

tion is concerned with selecting the most efficient query plan for executing a 

query. This process typically involves first transforming the query into another 

equivalent forms that have the potential to execute faster than the original one, 

and then generating the corresponding query plans and picking the most effi-

cient one based on the estimated cost of each plan. 

A general framework of the query optimization process is illustrated in 

Figure 2.1 The functionality of each module in the framework is described as 

follows. 
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Chapter 2 Related Work 18 

Figure 2.1 A General Framework of Query Optimizer 

Query Optimizer 
query 

I 一 一 一 — — ~¥ — — — 一 — I 
I Translator i 

I query representation 
I I I 
I Query Rewriter | 

I query representation ‘ 

I Planner 丨 

I 1 
query plan 

Query Evaluator 

• Translator first maps a query posed in a standard query language such as 

SQL (for relational databases) or OQL (for object-oriented databases), 

into an internal representation or algebra manipulated by the optimizer. 

Example internal representations include the Query Graph Model (or 

QGM) which is used in Starburst [34] and DB2, an Excess which is used 

in Exodus [9]. 

• Query Rewriter uses heuristics to rewrite queries (more accurately, query 

representations) into equivalent queries that are intended to be more 

efficient. 

• Planner is the main module of the ordering stage. It employs a search 

strategy that explores the space of access plans determined by the Al-

gebraic Space and the Method-Structure Space modules for each query 

produced in the previous stage. It compares these plans based on esti-

mates of their cost derived by the Cost Model and the Size-Distribution 

Estimator modules and selects the overall cheapest one to be used to 

generate the answer to the original query. 

The architecture is only a conceptual one and by no means fixed. In real 

� 
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systems, the modules shown do not always have such clear-cut boundaries. For 

example, Cascades [33] generates multiple queries during query rewriting, and 

generates plans for each before choosing one that is best. 

2.2 Query Rewriting 

2.2.1 Optimizing Multi-Block Queries 

Collapsing Multi-Block Queries to Single-block 

Query rewriting has its roots in early relational databases such as System R 

93] and Ingres [102] which supported view merging: the rewriting of a query 

over a view into a query over the data underlying the view. If one or more 

relations in a query are views, but each is defined through a conjunctive query, 

then the view definitions can simply be "unfolded" to obtain a single block 

SQL query. For example, if a query Q = Join (R, V) and view V = Join 

(S, T), then the query Q can be unfolded to Join (R, Join (S, T) ) and 

may be freely reordered. Unfortunately, this simple unfolding fails to work 

when the views are more complex than simple SPJ queries. When one or more 

of the views contain aggregation operators, unfolding requires the ability to 

pull-up the aggregation operators and to freely reorder not only the joins but 

also the aggregation operators to ensure correctness and optimality. System R 

and Ingres achieved this only under limited circumstances. And in spite of the 

acknowledged importance of such transformations, few systems have expanded 

upon these early transformation designs. 

Kim [55] proposed query unnesting strategies that rewrite nested queries 

(queries containing other queries) into join queries, thereby giving plan gener-

ators more alternatives to consider. Kim's ideas were later refined by many, 

including Ganski and Wong [30], Dayal [20] and Muralikrishna [76, 77]. These 

papers recognize the importance of merging of sub queries. [55，30] also deal 
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with subqueries containing aggregation. 

Consider, for example, the following relations [20]: 

EMP (Emp#, Name, Dept#， Sal) 

DEPT (Dept#， Name, Loc, Mgr) 

and the following SQL query, which contains a nested subquery block: 

Query 1 

SELECT EMP.Name 

FROM EMP 

WHERE EMP.Dept# IN 

SELECT DEPT.Dept# 

FROM DEPT 

WHERE DEPT.Loc = 'Denver， AND EMP.Emp# = DEPT.Mgr 

The semantics of the SQL prescribe that the tuples of the EMP relation be 

substituted in turn into the inner subquery block: for each tuple in EMP, the 

inner block is evaluated to yield a list of Dept# values; if EMP.Dept# is in 

this list, then EMP.Name is inserted into the result. The system R optimizer 

follows this prescription quite literally, optimizing only the execution of the 

inner block (after the substitution, the inner block contains two selections and 

the optimizer considers strategies for efficiently evaluating them) [93 . 

In [55], Kim showed that some nested SQL queries could be transformed 

into equivalent "canonical" queries that did not contain nesting; for instance, 

query 1 could be transformed into query 2: 

Query 2 

SELECT EMP.Name 

FROM EMP, DEPT 

WHERE EMP.Dept# = DEPT.Dept# AND DEPT.Loc = (Denver， 

AND EMP.Einp# = DEPT.Mgr 
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Query 2 is in a better form for optimization, because it allows the optimizer to 

consider more strategies. First, expressing the "nesting" predicate ( . . . IN 

SELECT. . .) between query blocks as an explicit join enables the optimizer 

to consider alternative methods (e.g. sort-merge) for implementing the join 

instead of always using tuple substitution. Second, it is easier to see from 

the form of query 2 that the query contains two joins between the EMP and 

DEPT relations; the optimizer m a y decide that it is less expensive to join the 

two relations on the EMP. Emp# = DEPT. Mgr predicate first (this is probably 

the most restrictive predicate anyway), and to apply the other predicate as a 

restriction. 

However, the example above is only a very simple case. The problem 

may become very complicated when queries that contain nested subqueries, 

aggregates, and quantifiers, are concerned. [20] addresses this problem by 

offering an algebraic view of unnesting and proposing a unified approach to 

processing the aforementioned complex queries. Nonetheless, no one has shown 

that a multi-block query can necessarily collapse into a single-block one. 

Optimizing Multi-Block Queries Using Magic Sets 

"Magic-Sets" was initially the name a query transformation algorithm [4] and 

later became a class of algorithms - Generalized Magic-sets of [5], Magic Tem-

plates of [90], Magic Conditions of [73] for processing recursive queries written 

in Datalog. Mumick et al [74] extended these techniques and defined the magic-

transformation for relational systems with duplicates, aggregation, grouping 

and recursion. 

The Magic Sets algorithm rewrites a query so that the fix-point evaluation 

of the transformed query generates no irrelevant tuples. The idea is to compute 

a set of auxiliary tables that contain the bindings used to restrict a table. The 

table expressions in the query are then modified by joining the auxiliary tables 

that act as filters and prevent the generation of irrelevant tuples. 
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As an example [94], consider the following SQL query which finds every 

young employee in a big department whose salary is higher than the average 

salary in that department: 

View Definition 

CREATE VIEW DepAvgSal As 

(SELECT Emp.did, AVG(Emp.sal) as avgsal FROM Emp 

GROUP BY EMP.did); 

Main Query Block 

SELECT EMP.eid, EMP.sal FROM EMP, DEPT, DepAvgSal 

WHERE EMP.did = DEPT.did AND EMP.did = DepAvgSal.did 

AND EMP.age < 30 AND DEPT.budget > 100,000 

AND EMP.sal > DepAvgSal.avgsal 

The query involves a relational view DepAvgSal that derives the average salary 

in each department, and a join between the EMP, DEPT and DepAvgSal relations. 

Magic sets rewriting exploits the fact that the average departmental salary 

need not be computed for every department; it need only be computed for 

those departments that are big and have young employees. If there are few 

such departments, it is probably desirable to apply magic sets rewriting. The 

rewritten query is shown below. 

View Definitions 

CREATE VIEW PartialResult AS 

(SELECT EMP.eid, EMP.sal, EMP.did FROM EMP, DEPT 

WHERE EMP.did = DEPT.did AND EMP.age < 30 

AND DEPT.budget > 100,000) 

CREATE VIEW Filter AS 
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(SELECT DISTINCT did FROM PartialResult)； 

CREATE VIEW LimitedDepAvgSal AS 

(SELECT Filter.did, AVG(EMP.sal) as avgsal 

FROM Filter, EMP 

WHERE EMP.did = Filter.did 

GROUP BY Filter.did); 

Main Query Block 

SELECT PartialResult.eid, PartialResult.sal 

FROM PartialResult, LimitedDepAvgSal 

WHERE PartialResult.did = LimitedDepAvgSal.did 

AND PartialResult.sal = LimitedDepAvgSal.avgsal 

The PartialResult view represents the partial computation in the main query 

block at the stage where the EMP and DEPT tables already have been joined 

together, but the view DepAvgSal has yet to be joined to them. Form this 

PartialResult table, a duplicate-free Filter view is created, which is a set 

of all those departments for which the average salary needs to be computed. 

This filter set is now used to limit the computation in the original view. The 

view is modified by the inclusion of an equi-join with the filter set (thereby 

limiting the computation in the view to the departments of interest). Finally 

in the main query block, the modified view is joined with the PartialResult 

table to produce the answer. In fact, there are many ways in which the filter 

set could be created, each corresponding to some subset of the tables in the 

FROM clause that results in the PartialResult relation. If every department is 

big and has young employees, rewritten queries provide no improvement over 

the original query, and may even be more expensive to execute. In general, it 

is important to balance the tradeoff between the cost of computing the views 

and use of such views to reduce the cost computation. 

—— i 
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A Magic-sets algorithm is proposed in [74] and it has been shown to be 

useful in rewriting multi-block queries containing view (including recursive 

view) definitions or nested subqueries [74, 75, 94, 95]. 

In [94], the authors proposed a practical scheme that models magic sets 

rewriting as a special join method that can be added to any cost-based query 

optimizer. This paper also provides a formal algebraic model of magic sets 

rewriting based on equivalence rules, involving the l9-semijoin operator, on the 

multiset relational algebra. 

Magic-sets has been implemented in the Starbiirst database system [75 . 

The algorithm [64] developed the idea of magic-sets by introducing a pred-

iccitc "Move Around”. Unlike the magic-sets transformation, predicate move-

ciround docs not need auxiliary relations (such as the magic and supplementary 

relations) and does not depend upon the join order. It passes the predicates 

across query blocks instead of results of views. 

2.2.2 Semantic Query Optimization 

Two ([uerics arc scuiantically equivalciil if th(�y rcturn the same answer for 

any state satisfying a given set of constraints. Srniaiitic qurry optimization 

56, 100, 97, 98, 110, 10, 105] uses soinaiitic kiiowlodgo in databases to 

row rite qu(�ri(�s and logic programs for Uir purpose of more (�Hic:i(�nt query 

evaluation. 

Most snnanlic o{)tiniizalion stratcgirs exploit knowUvlgr of intrgrity coii-

straiiits (I( 's). I( 's arc assertions that grt rvaliiatrd during (latal)as(> iipflatrs 

to gua rd against d a t a co iTupt ion . B(、caus(、integrity cons t ra in t s gua rd upda t e s , 

tlu\\' arc constraints on data values and arc i�X|)rrss(��l j^riniaiily l)y dcscriljiiig 

(lata (l(�prnd(�iic�i(�s. For example、，a doindiu roiistraiiit ciisurrs that spcrific^l 

columns ha\ o no \'aliu\s in common. Ht jr n niial "?","’//// roust raiiits r-nsurf 

that values appearing in one column of a relation also aĵ pr-ar as \-aliK's in 
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a column of another relation. Functional dependency constraints ensure that 

tuples that share values for some columns share values for other columns also. 

The very early semantic optimization papers [38, 56, 10] propose rewrites 

that exploit knowledge about integrity constraints to generate alternative ex-

pressions of relational queries. Hammer and Zdonik [38] use inclusion depen-

dencies to substitute smaller collections for larger ones as inputs to queries [do-

main refinement). Many systems (such as Starburst) use key dependencies to 

determine when duplicate elimination is unnecessary. Predicate Move-around 

64] exploits knowledge of functional dependencies to generate new filtering 

predicates for collections used as inputs to joins. Other optimization [101 

exploits functional dependencies to determine when sorting can be performed 

early during evaluation or avoided altogether. 

Besides the scheme-based integrity constraints that are valid for all in-

stances of a database, instance-based constraints, which are only valid for 

certain states of a database, contain more information than scheme-based con-

straints because they are specific to the current contents of the database. This 

makes instance-based constraints more useful to semantic query optimization 

86]. Since it is difficult to encode required semantic rules manually, espe-

cially in large global information systems, the DBMS is expected to include a 

module to learn and maintain those rules automatically. [99] uses predefined 

heuristics and intermediate results from the optimization process to direct the 

search for learning new rules. Instead of learning from past queries, [96] uses a 

data-driven approach which assumes that a set of relevant attributes is given. 

Focusing on these relevant attributes, their system explores the contents of 

the database and generates a set of rules in the hope that all useful rules are 

learned. Hsu ^ Knoblock [43] argued that both of the above two methods are 

imperfect: Siegel's system goes to one extreme by neglecting the importance 

of guiding the learning according to the contents of databases, while Shekhar's 

system goes to another extreme by neglecting dynamic query patterns. [43 

i 
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proposed to use inductive learning to obtain semantic rules. The learning al-

gorithm can automatically select useful join paths and attributes to construct 

rules from a database with many relations. 

However, the semantic rules may be highly sensitive to changes made to the 

database and must therefore be updated and validated before they can be ap-

plied. [86] address this problem by proposing a Metadata View Graph (MVG) 

which is a metadatabase that stores semantic rules, along with statistical and 

structural metadata, for logical views of the database. Hsu [42] extended his 

early work by introducing the notation of robustness. The learned rules are ex-

pected to be robust because the learner is able to guide the learning for robust 

rules with an approach estimating the probabilities of database changes. 

2.2.3 Query Rewriting in Starburst 

Previous proposals are intended as ad hoc extensions of query optimizers. Star-

burst [85] elevates these ad hoc extensions to a distinct phase of query opti-

mization know as query rewriting. Rewrites applied during this phase include 

view merging and query unnesting, as well as other rewrites that accomplish 

one of the following objectives: 

• Normalization: In database languages such as SQL, it is often possible for 

a poorly expressed query, though ostensibly declarative, to force typical 

plan optimizers into choosing sub-optimal execution plans. One goal of 

query rewriting is to transform such "procedural" queries into equivalent 

but more declarative queries. 

• Improvement: Query rewriting might also apply heuristics that are likely 

to lead to better plans, regardless of the contents or physical representa-

tion of the collections being queried. An example of this is a rewrite of 

a query that performs duplicate elimination into a query that does not. 

i 
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This rewrite is valid when duplicate elimination is performed on a collec-

tion that is already free of duplicates (for example, a collection resulting 

from projecting on a key attribute of a relation). Duplicate elimination 

is costly, requiring an initial sort or grouping of the elements of a col-

lection. Therefore, rewriting a query to avoid duplicate elimination is 

always worthwhile. 

2.3 Plan Generation 

While query rewriting is a heuristic phase that narrows the space of plans to 

consider, the plan generation is a cost-based phase that compares the relative 

merits of plans that lie in the narrowed space. 

2.3.1 Dynamic Programming Approach 

There are several types of search strategies that the Planner may employ for its 

exploration. By far the most important one is based on dynamic programming. 

It was first proposed in the context of System R [93] and is currently used by 

virtually all commercial systems. The dynamic programming strategy assumes 

that the plan considered so far has reached the local optimal (minimum cost) 

already and the filial optimal result is produced by the addition of each optimal 

siibplan. The algorithm has complexity 0 ( 2 ” fro n relations in the queries, 

but this is only valid for left-deep trees. In addition, System R algorithm 

saves “interesting order'' plans, which can be served for the sorted result as 

likely nccclccl in queries. Although this algorithm does not guarantee to be an 

optimal evaluation plan in reality (due to its simplified assumption on queries), 

vet the worst ease could be mostly avoided. 

For large queries, which appear in various novel database applications, sev-

eral other algorithms have been proposed. Of these, randomized algorithms, 
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for example, simulated annealing, iterative improvement, and two-phase opti-

mization, appear very promising [49, 107 

2.3.2 Join Query Processing 

Since join is an expensive yet frequent operation in relational queries, it is 

of great importance to determine good evaluation strategies for join queries. 

Many optimizations of the join operation automatically include the optimiza-

tion of the other common relational operations, namely, the select and project 

operations, because they are implicit in the join operation. 

The work in this area mainly fall into two categories: (1) the development 

of efficient algorithms for implementing the join operation; (2) algorithms that 

determine the order in which the joins are to be performed. 

Implementation of Joins 

Various types of joins have been defined, say, equijoin, natural join, semijoin 

6], outerjoin [19], self-join [44], composition, etc. Some of them are direct 

derivatives of the theta-join; others are combinations of the theta-join and 

other relational operations. Unless otherwise noted, the techniques and meth-

ods discussed below are used to implement the theta-join. 

• Nested-loops Join is the simplest join method. The two relations involved 

are designated as inner relation and outer relation respectively. For each 

tuple of the outer relation, all tuples of the the inner relation are read 

and compared with the tuple from the outer relation. Whenever the 

join condition is satisfied, the two tuples are concatenated and placed 

in the output buffer. The simplest implementation of this algorithm 

requires 0 (n x m) time for execution of joins. The exhaustive matching 

makes it unsuitable for joining large relations unless the selectivity is 

high. However, the simplicity of this algorithm has made it a popular 
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choice for hardware implementation in database machines [103] and it can 

be paralleled with great advantage. [54, 25] discussed the improvement 

of this algorithm. 

• Sort-Merge Join is executed in two stages. First, both relations are 

sorted on the join attributes. Then both relations are scanned in the 

order of the join attributes, and tuples satisfying the join condition are 

merged to form a single relation. Whenever a tuple form the first relation 

matches a tuple from the second relation, the tuples are concatenated and 

placed in the outer relation. The merge process varies slightly depending 

on whether the join attributes are primary key attributes, secondary 

key attributes, or non-key attributes. If the join attributes are not the 

primary key attributes, multiple tuples with the same attribute values 

may exist. This necessitates several passes over the same set of tuples 

of the inner relation. If the relations are presorted, this algorithm has 

a major advantage over the brute force approach of the nested-loops 

method, because each relation is scanned only once. Further, if the join 

selectivities are low, the number of tuples compared is considerably lower 

than in the case of nested-loop join. The processing time depends on the 

sorting and merging algorithms used. In general, the overall execution 

time is more dependent on the sorting time, which is usually 0(nlog n) 

for each relation, where n is the cardinality of the relation. Execution 

is further simplified if the join attributes are indexed in both relations. 

If no indexes exist on the join attributes, if not much is known about 

the selectivities, and if there is no basis for choosing a particular join 

algorithm, then this algorithm is often found to be the best choice [103]. 

• Hash Join Methods [8] attempt to isolate the tuples from the relation 

A that may join with a given tuple from the other relation B. Then 

tuples from the B are compared with a limited set of tuples from A. A 
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large number of join methods using hashing has been proposed and/or 

implemented, such as simple hash join [23], hash-partitioned joins [22], 

etc. Here we take simple hash join for illustration. In this method, 

the join attribute(s) values in the first relation are hashed using a hash 

function. These hashed values point to a hash table in which each entry 

may contain entire tuples or only tuple-ids. In the latter case, it may be 

useful to store the key values as well. Depending on the efficiency of the 

hash function, one or more entries may hash to the same bucket. Then 

for each tuple of the other relation participating in the join, the join 

attribute values are hashed using the same hashing function as before. 

If the values has to a nonempty bucket of the previous has table, the 

tuple(s) in the hash table bucket are compared with the tuple of the 

second relation. The tuples are joined is the join condition is satisfied. 

The class of hash-based joins have been found to be some of the most 

efficient join techniques [31]. The complexity of this method is 0{n-\-m). 

The performance of this method depends on the performance of the hash 

function. And a further problem with the hash-based join methods is 

that elimination of duplicates might be harder because of collisions [3]. 

Various join methods have been briefly described in this section. Refer to 

89] for a detailed discussion of these and other techniques. 

Join Ordering 

Besides the necessity of finding a good algorithm to implement the join opera-

tion, it is also important to optimize the join orders to generate a cost-effective 

evaluation plan for the join query. The problem has been extensively stud-

ied and various solutions are proposed. Some solutions perform exhaustive 

enumeration of plans [18, 35, 65, 81, 82, 83, 109], such as using a Dynamic 

Programming algorithm as described in the preceding section. Though they 
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work well when only few relations are to be joined, they do not scale up well. 

Actually, if more than eight relation are to be joined, the generally NP-hard 

problem of determining the optimal order [45] can no longer be solved pre-

cisely. [72] studied alternative solutions to reduce the search space and com-

pute (hopefully) good approximate solutions through techniques such as (1) 

augmentation heuristics, which build an evaluation plan step by step according 

to certain criteria, and (2) randomized algorithms, which perform some kind 

of "random walk" through the space of all possible solutions seeking a solution 

with minimal evaluation cost. 

Before describing the join ordering strategies, we first consider the search 

space for generating a solution plan. Traditionally, the sequence of join oper-

ations is restricted to limit the search space. A subset of the complete space, 

the set of so-called left-deep processing trees, is considered in System R and 

has been of special interest to researchers [93, 107, 106]. However, since join 

operations are commutative and associative, the sequence of joins may not 

be linear. Such query trees are called bushy trees. Bushy join sequences re-

quire materialization of intermediate relations. While bushy trees may result 

in cheaper query plan, they expand the cost of enumerating the search space 

considerably. So most current systems still focus on linear-deep trees and only 

restricted subset of bushy trees. 

In the remainder of this section, we discuss some join ordering strategies. 

• Deterministic algorithms construct solutions step by step in a determin-

istic manner, either by applying a heuristic or exhaustive search. Many 

heuristics have been proposed and their main concern is to avoid doing 

joins that would likely result in a huge intermediate relation. These al-

gorithms are summarized as follows:(1 )Minimum Selectivity: Join any 

relation with smaller selectivity; (2)Top-Down Heuristic: Select the re-

lation from the set that can be joined with lowest cost with remaining 

relations. 
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(SELECT DISTINCT did FROM PartialResult)； 

CREATE VIEW LimitedDepAvgSal AS 

(SELECT Filter.did, AVG(EMP.sal) as avgsal 

FROM Filter, EMP 

WHERE EMP.did = Filter.did 

GROUP BY Filter.did)； 

Main Query Block 

SELECT PartialResult.eid, PartialResult.sal 

FROM PartialResult, LimitedDepAvgSal 

WHERE PartialResult.did = LimitedDepAvgSal.did 

AND PartialResult.sal = LimitedDepAvgSal.avgsal 

The PartialResult view represents the partial computation in the main query 

block at the stage where the EMP and DEPT tables already have been joined 

together, but the view DepAvgSal has yet to be joined to them. Form this 

PartialResult table, a duplicate-free Filter view is created, which is a set 

of all those departments for which the average salary needs to be computed. 

This filter set is now used to limit the computation in the original view. The 

view is modified by the inclusion of an equi-join with the filter set (thereby 

limiting the computation in the view to the departments of interest). Finally 

in the main query block, the modified view is joined with the PartialResult 

table to produce the answer. In fact, there are many ways in which the filter 

set could be created, each corresponding to some subset of the tables in the 

FROM clause that results in the PartialResult relation. If every department is 

big and has young employees, rewritten queries provide no improvement over 

the original query, and may even be more expensive to execute. In general, it 

is important to balance the tradeoff between the cost of computing the views 

and use of such views to reduce the cost computation. 
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A Magic-sets algorithm is proposed in [74] and it has been shown to be 

useful in rewriting multi-block queries containing view (including recursive 

view) definitions or nested sub queries [74, 75, 94, 95]. 

In [94], the authors proposed a practical scheme that models magic sets 

rewriting as a special join method that can be added to any cost-based query 

optimizer. This paper also provides a formal algebraic model of magic sets 

rewriting based on equivalence rules, involving the 没-semijoin operator, on the 

multiset relational algebra. 

Magic-sets has been implemented in the Starburst database system [75]. 

The algorithm [64] developed the idea of magic-sets by introducing a pred-

icate "Move Around". Unlike the magic-sets transformation, predicate move-

around does not need auxiliary relations (such as the magic and supplementary 

relations) and does not depend upon the join order. It passes the predicates 

across query blocks instead of results of views. 

2.2.2 Semantic Query Optimization 

Two queries are semantically equivalent if they return the same answer for 

any state satisfying a given set of constraints. Semantic query optimization 

38, 56, 100, 97, 98, 110, 10, 105] uses semantic knowledge in databases to 

rewrite queries and logic programs for the purpose of more efficient query 

evaluation. 

Most semantic optimization strategies exploit knowledge of integrity con-

straints (ICs). ICs are assertions that get evaluated during database updates 

to guard against data corruption. Because integrity constraints guard updates, 

they are constraints on data values and are expressed primarily by describing 

data dependencies. For example, a domain constraint ensures that specified 

columns have no values in common. Referential integrity constraints ensure 

that values appearing in one column of a relation also appear as values in 



Chapter 2 Related Work 14 

a column of another relation. Functional dependency constraints ensure that 

tuples that share values for some columns share values for other columns also. 

The very early semantic optimization papers [38, 56, 10] propose rewrites 

that exploit knowledge about integrity constraints to generate alternative ex-

pressions of relational queries. Hammer and Zdonik [38] use inclusion depen-

dencies to substitute smaller collections for larger ones as inputs to queries [do-

main refinement). Many systems (such as Starburst) use key dependencies to 

determine when duplicate elimination is unnecessary. Predicate Move-around 

64] exploits knowledge of functional dependencies to generate new filtering 

predicates for collections used as inputs to joins. Other optimization [101 

exploits functional dependencies to determine when sorting can be performed 

early during evaluation or avoided altogether. 

Besides the scheme-based integrity constraints that are valid for all in-

stances of a database, instance-based constraints, which are only valid for 

certain states of a database, contain more information than scheme-based con-

straints because they are specific to the current contents of the database. This 

makes instance-based constraints more useful to semantic query optimization 

86]. Since it is difficult to encode required semantic rules manually, espe-

cially in large global information systems, the DBMS is expected to include a 

module to learn and maintain those rules automatically. [99] uses predefined 

heuristics and intermediate results from the optimization process to direct the 

search for learning new rules. Instead of learning from past queries, [96] uses a 

data-driven approach which assumes that a set of relevant attributes is given. 

Focusing on these relevant attributes, their system explores the contents of 

the database and generates a set of rules in the hope that all useful rules are 

learned. Hsu & Knoblock [43] argued that both of the above two methods are 

imperfect: Siegel's system goes to one extreme by neglecting the importance 

of guiding the learning according to the contents of databases, while Shekhar's 

system goes to another extreme by neglecting dynamic query patterns. [43 
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proposed to use inductive learning to obtain semantic rules. The learning al-

gorithm can automatically select useful join paths and attributes to construct 

rules from a database with many relations. 

However, the semantic rules may be highly sensitive to changes made to the 

database and must therefore be updated and validated before they can be ap-

plied. [86] address this problem by proposing a Metadata View Graph (MVG) 

which is a metadatabase that stores semantic rules, along with statistical and 

structural metadata, for logical views of the database. Hsu [42] extended his 

early work by introducing the notation of robustness. The learned rules are ex-

pected to be robust because the learner is able to guide the learning for robust 

rules with an approach estimating the probabilities of database changes. 

2.2.3 Query Rewriting in Starburst 

Previous proposals are intended as ad hoc extensions of query optimizers. Star-

burst [85] elevates these ad hoc extensions to a distinct phase of query opti-

mization know as query rewriting. Rewrites applied during this phase include 

view merging and query unnesting, as well as other rewrites that accomplish 

one of the following objectives: 

• Normalization: In database languages such as SQL, it is often possible for 

a poorly expressed query, though ostensibly declarative, to force typical 

plan optimizers into choosing sub-optimal execution plans. One goal of 

query rewriting is to transform such "procedural" queries into equivalent 

but more declarative queries. 

• Improvement: Query rewriting might also apply heuristics that are likely 

to lead to better plans, regardless of the contents or physical representa-

tion of the collections being queried. An example of this is a rewrite of 

a query that performs duplicate elimination into a query that does not. 
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This rewrite is valid when duplicate elimination is performed on a collec-

tion that is already free of duplicates (for example, a collection resulting 

from projecting on a key attribute of a relation). Duplicate elimination 

is costly, requiring an initial sort or grouping of the elements of a col-

lection. Therefore, rewriting a query to avoid duplicate elimination is 

always worthwhile. 

2.3 Plan Generation 

While query rewriting is a heuristic phase that narrows the space of plans to 

consider, the plan generation is a cost-based phase that compares the relative 

merits of plans that lie in the narrowed space. 

2.3.1 Dynamic Programming Approach 

There are several types of search strategies that the Planner may employ for its 

exploration. By far the most important one is based on dynamic programming. 

It was first proposed in the context of System R [93] and is currently used by 

virtually all commercial systems. The dynamic programming strategy assumes 

that the plan considered so far has reached the local optimal (minimum cost) 

already and the final optimal result is produced by the addition of cadi optimal 

subplan. The algorithm has complexity 0(2") fro n relations in the queries, 

but this is only valid for left-deep trees. In addition, System R algorithm 

saves "interesting order'' plans, which can be served for the sorted result as 

likely nccclccl in queries. Although this algorithm docs not guarantee to be aii 

optimal evaluation plan in reality (duo to its siinplifiocl assumption on queries), 

yet the worst ease could be mostly avoided. 

For largo queries, which appear in various novel database applications, sev-

cml other algorithms have been proposed. Of these, raiuloniizcd algorithms, 
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for example, simulated annealing, iterative improvement, and two-phase opti-

mization, appear very promising [49, 107 

2.3.2 Join Query Processing 

Since join is an expensive yet frequent operation in relational queries, it is 

of great importance to determine good evaluation strategies for join queries. 

Many optimizations of the join operation automatically include the optimiza-

tion of the other common relational operations, namely, the select and project 

operations, because they are implicit in the join operation. 

The work in this area mainly fall into two categories: (1) the development 

of efficient algorithms for implementing the join operation; (2) algorithms that 

determine the order in which the joins are to be performed. 

Implementation of Joins 

Various types of joins have been defined, say, equijoin, natural join, semijoin 

6], outer join [19], self-join [44], composition, etc. Some of them are direct 

derivatives of the theta-join; others are combinations of the theta-join and 

other relational operations. Unless otherwise noted, the techniques and meth-

ods discussed below are used to implement the theta-join. 

• Nested-loops Join is the simplest join method. The two relations involved 

are designated as inner relation and outer relation respectively. For each 

tuple of the outer relation, all tuples of the the inner relation are read 

and compared with the tuple from the outer relation. Whenever the 

join condition is satisfied, the two tuples are concatenated and placed 

in the output buffer. The simplest implementation of this algorithm 

requires 0{n x m) time for execution of joins. The exhaustive matching 

makes it unsuitable for joining large relations unless the selectivity is 

high. However, the simplicity of this algorithm has made it a popular 
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choice for hardware implementation in database machines [103] and it can 

be paralleled with great advantage. [54, 25] discussed the improvement 

of this algorithm. 

• Sort-Merge Join is executed in two stages. First, both relations are 

sorted on the join attributes. Then both relations are scanned in the 

order of the join attributes, and tuples satisfying the join condition are 

merged to form a single relation. Whenever a tuple form the first relation 

matches a tuple from the second relation, the tuples are concatenated and 

placed in the outer relation. The merge process varies slightly depending 

on whether the join attributes are primary key attributes, secondary 

key attributes, or non-key attributes. If the join attributes are not the 

primary key attributes, multiple tuples with the same attribute values 

may exist. This necessitates several passes over the same set of tuples 

of the inner relation. If the relations are presorted, this algorithm has 

a major advantage over the brute force approach of the nested-loops 

method, because each relation is scanned only once. Further, if the join 

selectivities are low, the number of tuples compared is considerably lower 

than in the case of nested-loop join. The processing time depends on the 

sorting and merging algorithms used. In general, the overall execution 

time is more dependent on the sorting time, which is usually O(nlog n) 

for each relation, where n is the cardinality of the relation. Execution 

is further simplified if the join attributes are indexed in both relations. 

If no indexes exist on the join attributes, if not much is known about 

the selectivities, and if there is no basis for choosing a particular join 

algorithm, then this algorithm is often found to be the best choice [103 . 

• Hash Join Methods [8] attempt to isolate the tuples from the relation 

A that may join with a given tuple from the other relation B. Then 

tuples from the B are compared with a limited set of tuples from A. A 
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large number of join methods using hashing has been proposed and/or 

implemented, such as simple hash join [23], hash-partitioned joins [22], 

etc. Here we take simple hash join for illustration. In this method, 

the join attribute(s) values in the first relation are hashed using a hash 

function. These hashed values point to a hash table in which each entry 

may contain entire tuples or only tuple-ids. In the latter case, it may be 

useful to store the key values as well. Depending on the efficiency of the 

hash function, one or more entries may hash to the same bucket. Then 

for each tuple of the other relation participating in the join, the join 

attribute values are hashed using the same hashing function as before. 

If the values has to a nonempty bucket of the previous has table, the 

tuple(s) in the hash table bucket are compared with the tuple of the 

second relation. The tuples are joined is the join condition is satisfied. 

The class of hash-based joins have been found to be some of the most 

efficient join techniques [31]. The complexity of this method is 0(n-\-m). 

The performance of this method depends on the performance of the hash 

function. And a further problem with the hash-based join methods is 

that elimination of duplicates might be harder because of collisions [3 . 

Various join methods have been briefly described in this section. Refer to 

89] for a detailed discussion of these and other techniques. 

Join Ordering 

Besides the necessity of finding a good algorithm to implement the join opera-

tion, it is also important to optimize the join orders to generate a cost-effective 

evaluation plan for the join query. The problem has been extensively stud-

ied and various solutions are proposed. Some solutions perform exhaustive 

enumeration of plans [18, 35, 65, 81, 82, 83, 109], such as using a Dynamic 

Programming algorithm as described in the preceding section. Though they 
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work well when only few relations are to be joined, they do not scale up well. 

Actually, if more than eight relation are to be joined, the generally NP-hard 

problem of determining the optimal order [45] can no longer be solved pre-

cisely. [72] studied alternative solutions to reduce the search space and com-

pute (hopefully) good approximate solutions through techniques such as (1) 

augmentation heuristics, which build an evaluation plan step by step according 

to certain criteria, and (2) randomized algorithms, which perform some kind 

of "random walk" through the space of all possible solutions seeking a solution 

with minimal evaluation cost. 

Before describing the join ordering strategies, we first consider the search 

space for generating a solution plan. Traditionally, the sequence of join oper-

ations is restricted to limit the search space. A subset of the complete space, 

the set of so-called left-deep processing trees, is considered in System R and 

has been of special interest to researchers [93, 107, 106]. However, since join 

operations are commutative and associative, the sequence of joins may not 

be linear. Such query trees are called bushy trees. Bushy join sequences re-

quire materialization of intermediate relations. While bushy trees may result 

in cheaper query plan, they expand the cost of enumerating the search space 

considerably. So most current systems still focus on linear-deep trees and only 

restricted subset of bushy trees. 

In the remainder of this section, we discuss some join ordering strategies. 

• Deterministic algorithms construct solutions step by step in a determin-

istic manner, either by applying a heuristic or exhaustive search. Many 

heuristics have been proposed and their main concern is to avoid doing 

joins that would likely result in a huge intermediate relation. These al-

gorithms are summarized as follows: (1)Minimum Selectivity: Join any 

relation with smaller selectivity; (2)Top-Down Heuristic: Select the re-

lation from the set that can be joined with lowest cost with remaining 

relations. 

i 
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Besides, [45] showed that it is possible to compute the optimal nesting 

order in polynomial time, provided the query graph forms a tree and 

the cost function is a member of a certain class. Based on this result, 

60] developed an algorithm (KBZ algorithm) that computes the optimal 

solution for a tree query in 0{n'^) time, where n is the number of joins. 

Furthermore, [108] developed an AB algorithm based on KBZ with vari-

ous enhancements trying to remove the restrictions that are imposed on 

the join method placement. The algorithms mentioned above consider 

linear processing trees only. 

• Randomized algorithms: Two solutions are connected by an edge in a 

solution space iff they can be transformed into another by exactly one 

move. Each move is performed according to certain rules, and the best 

solution is obtained as long as all applicable rules have been used or time 

limit is exceeded. Also, this kind of random algorithm expands the join 

order problem by considering not only the left-deep trees but also the 

bushy tree. 

Iterative improvement algorithm [107, 106, 49] starts at a random point, 

proceeds to seek a minimum cost point using a strategy similar to hill-

climbing. If the cost associated with a neighboring point is lower than 

the cost of the current point, a move is carried out and a new neighbor 

with the lower cost is sought. A point is assumed to be a local minimum 

if no lower-cost neighbor can be found in a certain number of tries. This 

procedure is repeated until a predetermined number of starting points 

are processed or a time limit is exceeded. The lowest local minimum is 

the result. 

Simulated annealing [50, 107] avoid the problem of trapping by high cost-

local minima that is common to hill-climbing algorithms. They allow a 

move to be carried out even if the neighboring point is of higher cost. 
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But this kind of algorithms tend to be more time-consuming. 

Two-phase optimization [49] attempt to exploit the advantage of both the 

iterative and simulated annealing algorithm. For a number of randomly 

selected starting points, local minima are sought by way of iterative im-

provement. Then from the lowest of these local minima, the simulated 

annealing algorithm is started to search the neighborhood for better so-

lutions. 

Toured simulated annealing [61] is similar to two-phase optimization. In 

this method, several simulated annealing "tours" with different starting 

points are performed. Each starting point is derived from a deterministic 

algorithm that greedily builds processing trees using some augmentation 

heuristic. 

Random sampling [29] is based on the observation that a significant frac-

tion of solutions is rather close to the minimum. An algorithm that 

draws a truly random sample of solutions should therefore contain the 

same fraction of good solutions as the entire space; however, designing 

such an algorithm that selects each processing tree with equal proba-

bility is not trivial. In the aforementioned work, such an algorithm is 

presented; its application is most appropriate when a reasonably good 

evaluation plan has to been identified quickly. 

72] compared the performance of various optimization algorithms by exper-

iments and indicate that: (1) heuristic optimizers avoid the high time complex-

ity of exhaustive enumeration, but results are, especially for complex queries 

with many participating relations, rarely acceptable; (2) the usefulness of KBZ 

algorithm is limited by its need fro cost model approximations and problems 

concerning join method assignment; (3)randomized algorithms operating the 

bushy tree solution space are the most appropriate optimizers in the general 

case, provided that the problems are too complex to be tackled by exhaustive 
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enumeration. 

However, while the randomized algorithms may generate efficient plans in 

some cases, they do not have any performance guarantees in terms of the 

quality of plans generated (i.e., the plans generated by them can be arbitrarily 

far from the optimal one). 

92] points out that we can not expect to find any polynomial algorithm 

for any (sub)problem as long as optimal busy trees are to be generated. They 

show that problem is NP-hard independent of the query graph. They also 

present two efficient algorithms to address the problem of generating left-deep 

trees possibly containing cross products for the restricted class of chain queries. 

2.3.3 Queries with Aggregates 

11, 12, 13] raised the question of how to optimize queries with aggregates. 

Traditional query processing systems directly implement SQL semantics and 

defer execution of grouping until all joins in the FROM and WHERE clauses 

have been executed. Furthermore, for queries that reference views with aggre-

gates, traditional optimizers do not consider flattening such views. [11, 12, 13 

show that there is a rich set of execution alternatives that can significantly 

enhance the quality of plans produced. 

First, for single-block SQL queries, we should consider alternatives where a 

group-by operation precedes a join, because an early evaluation of the group-by 

can significantly reduce the size of the input to the join. Such a transformation 

may also result in the grouping operation to be pushed down to a base table. In 

such an event, one can use indexes on the base tables to combine the operation 

of the join and the group-by. 

Second, in case of queries containing views with aggregates, the presence of 

Group-by hinders the ability to reorder relations within the view with relation 

outside. Yet, reordering joins across view boundaries has the potential of 
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generating cheaper execution alternatives. 

12] provides an overview of the proposed transformations. 

2.4 Statistics and Cost Estimation 

As mentioned in Section 2.1，the Planner performs the task of optimization in 

a cost-based manner, i.e., the planner performs a search among a large space 

of equivalent plans, estimates the cost of each plan, and returns the plan of the 

least cost. Here, the cost may be CPU time, I /O cost, memory, communication 

bandwidth, or a combination of these. Given a plan, it is of critical importance 

to estimate its cost as accurately and efficiently as possible. 

The basic estimation framework consists of two phases that were first pro-

posed in the design of System-R: First, the data that have been stored in the 

database are processed and statistical summaries are obtained and stored in a 

catlog; Second, given a plan and the statistical summary for each of its input 

data streams, the query optimizer determine the statistical summary of the 

output data stream and estimate the cost of executing the plan. 

Selectivity is one of the most important factors that affect the cost of a 

query plan. To put it simply, selectivity is the fraction of tuples in a relation 

(table) that satisfy a given predicate. For example, Table 2.1 shows a relation 

STUDENT in a student record database. Consider the following query on this 

SID Age Grade 
s l O O O l O 3 
slOOl 11 4 
sl002 11 4 
sl003 I 9 I 2 

Tabic 2.1: Relation STUDENT in a Student Record Database 

relation: 

SELECT * 
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FROM STUDENT 

WHERE Age<=10 

The selectivity of the above query is 50%, since two out of the four tuples in 

the relation have the Age value less or equal to 10. 

In most cases, the accuracy of selectivity estimates directly affects the 

choice of best plan, because the cost of an operator in a query plan depends on 

the size of its input relations, while those input relations may in turn be the 

result of another operator (or a tree of operators). Obviously the more space 

spent on storing the statistics information about the data, the more accurate 

the estimation would be. However, in practice, the database catalog has to 

be small due to storage limitation. Besides, a large catalog would slow down 

the optimizer and downgrade the performance of the whole database system 

32, 71]. Thus the problem we are facing is how to organize and store statis-

tical information in a limited space to assist accurate and efficient selectivity 

estimation. 

The issue of selectivity estimation has been extensively studied in the lit-

erature and a large variety of methods have been proposed [66, 104, 47, 88, 

32, 71, 2, 58, 52，59]. For the purpose of this thesis, we classify them into two 

broad classes: histogram techniques and non-histogram techniques. We first 

give a brief review of the non-histogram techniques below. Since histogram 

techniques are the focus of this thesis, we will devote a separate section to 

them. 

Non-histogram techniques fall into the following three categories. Basically, 

they are still in the stage of research, and not employed in commercial database 

systems. 

• Parametric Method Parametric methods approximate the actual dis-

tribution with a mathematical distribution function of a certain number 

of free statistical parameter(s) to be estimated (we call such a function 
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a model function). Examples of the model function include the uniform, 

normal, Pearson family and Zipf distributions. In these methods, statis-

tics must be collected, either by scanning through or by sampling from 

the relation, in order to estimate the free parameter(s). These methods 

usually require less storage overhead and provide more accurate estima-

tion than non-parametric methods {if the model function fits the actual 

distribution). The disadvantage of this method is that the "shape" of the 

actual distribution must be known a priori in order to choose a suitable 

model function. Moreover, when the actual distribution is not shaped 

like any of the known model functions, any attempt to approximate the 

distribution by this method will be in vain. Contributions to research of 

parametric methods can be found in [93, 91, 27, 16]. 

• Curve Fitting In order to overcome the inflexibility of the parametric 

method, [63] and [104] used a general polynomial function and applied 

the criterion of least-square error to approximate attribute value distri-

bution. First, the relation is exhaustively scanned, and the number of 

occurrences of each attribute value is counted. These numbers are then 

used to compute the coefficients of the optimal polynomial that min-

imizes the sum of the squares of the estimation errors over all distinct 

attribute values. Polynomial approximation has been widely used in data 

analysis; however, care must be taken here to avoid the problem of os-

cillation (which may lead to negative values) and rounding error (which 

may propagate and result in poor estimation when the degree of the 

polynomial is high, say, more than 10). [14] used feedback from queries 

execution to determine data distributions by regression. [39] stepped 

further to use machine learning techniques to solve the problem of query 

size estimation. They claimed that the machine learning technique is 

superior to a curve fitting method in approximating query result sizes. 
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• Sampling The sampling method has recently been investigated for es-

timating the resulting sizes of queries. Sample tuples are taken from 

the relations, and queries are performed against these samples to collect 

the statistics. Sufficient samples must be examined before desired ac-

curacy can be achieved. Variations of this method have been proposed 

in [41, 66, 36, 80, 40]. Though the sampling method usually gives more 

accurate estimation than all other methods (suppose sufficient samples 

are taken), it is primarily used in answering statistical queries (such as 

COUNT(: : :)). In the context of query optimization where selectivity 

estimation is much more frequent, the cost of the sampling method is 

prohibitive and has essentially prevented its practical use. [79] provides 

an excellent overview on this topic. And [17] proposed an algorithm that 

chooses the plan of the least expected cost instead of the plan of least cost 

given expected values of the statistical properties of the database. 

2.5 Histogram Techniques 

Histograms are the most widely used form of statistics in major commercial 

database systems, and histogram techniques are still a hot research topic in 

the database community. A histogram on attribute X is constructed by parti-

tioning the data distribution T into disjoint subsets called buckets and approx-

imating the frequencies and values in each bucket in some common fashion. 

The boundaries of these buckets are determined according to a partitioning 

rule that seeks to effectively approximate T . 

88] provides a taxonomy to capture all previously proposed histograms 

and introduces some new histogram techniques by combining effective aspects 

of different histogram methods. In this section, we briefly review some of the 

most commonly referred histogram techniques in the literature and highlight 

their advantages and disadvantages. 
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Before describing the various histogram techniques, we first present some 

definitions that will be used throughout this thesis. 

2.5.1 Definitions 

In this thesis, we follow the set of definitions introduced in [88], which are 

described below. The domain V of an attribute X in relation R is the set 

of all possible values of X and the (finite) value set V(C V) is the set of 

values of X that are actually present in R. The cardinality of V is N. Let 

V = {vi \ < i < D } , where Vi < Vj when i < j. The spread Si of Vi is defined 

as Si — Vij^i — Vi^ iox \ < i < D. (We take 5o 二 vi and sd = 1.) In this 

thesis we only consider numerical attributes. A commonly used technique for 

constructing histograms on non-numerical attributes (such as string fields, etc.) 

is to use a function that converts these data types into floating point numbers 

before constructing a histogram. The frequency fi of Vi is the number of tuples 

t G -R with t.X = Vi. The cumulative frequency Ci of Vi is the number of tuples 

t £ R with t.X < Vi, i.e., Ci = fj. The data distribution of X (in R) is the 

set of pairs T = {(ui, fi), (v2, / 2 ) , . . . , (”£>, fn)}- Similarly, the cumulative data 

distribution of X is the set of pairs T�二 {(^^i, ci), C2),... , (”£>, cd)} . The 

range of a bucket B C T is the interval v*{B)], where v^{B) and v*(B) 

are the smallest and largest values covered by B. The length of its range is equal 

to v*{B) — v^{B). The boundaries for the z-th bucket is bi and bi+i. To estimate 

the result size of the predicate a < X < b, an estimation routine identifies each 

bucket B for which the ranges v*{B)] and [a, b] overlap. Then, using 

specified approximation formulas, it estimates the number of values in each 

identified bucket that satisfy the range predicate, along with the frequency of 

each such value. These frequencies are summed over all identified buckets to 

yield the estimate of the result size. 
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2.5.2 Trivial Histograms 

The selectivity estimation method used in System-R can be regarded as the 

predecessor of modern histogram techniques. The System-R optimizer as-

sumed that the underlying data is uniform and independent. As a result, 

only the number of tuples and the lowest and highest values in each attribute 

are stored in the system catalogs, and it is assumed that all possible values 

between the two extremes occur with the same probability. Hence, very few 

resources are required to compute, maintain, and use these statistics. In prac-

tice, though, these assumptions rarely hold because most data tends to be 

non-uniform and has dependencies. Hence, the resulting estimates are often 

inaccurate. This was formally verified in the context of query result size es-

timation by loannidis and Christodoulakis in [48]. In their work they proved 

that the worst case errors incurred by the uniformity assumption propagate 

exponentionally as the number of joins in the query increases. As a result, 

except for very small queries, errors may become extremely high, resulting in 

inaccurate estimates for result sizes and hence for the execution costs. 

2.5.3 Heuristic-based Histograms 
i t 

Histograms in this class are built based on some specific heuristics. Among 

them are two most widely used histograms in today's DBMSs: the equi-width 

and equi-depth histograms [84, 68]. Both of these histograms group contiguous 

ranges of attribute values into buckets and assume that all attribute values 

within the range corresponding to a given bucket occur with equal probability. 

They only differ in the partitioning rule employed, as follows. In an equi-width 

histogram, the widths of all buckets' ranges are the same; in an equi-depth (or 

equi-height) histogram, the total number of tuples having the attribute values 

associated with each bucket is the same. 

As an example, consider the distribution of values in Figure 2.2. Suppose 
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it corresponds to the attribute age in a relation. By definition, the equi-width 

histogram forms the following groups: (0,1,2), (3,4,5), (6, 7, 8), (9, 10, 11), 

(12, 13, 14), each having the same width of 3. The average sum of frequencies 

in the equi-depth histogram is 45/5=9, because the sum of frequencies is 45 

and the number of buckets is 5. The equi-depth histogram forms the following 

groups: (0, 1，2, 3), (4, 5, 6), (7), (8,9, 10, 11, 12, 13), (14), with aggregate 

frequencies of 9, 8, 8, 11, 9 respectively. The approximate data distributions 

for these two histograms, obtained by replacing the frequencies of all possible 

values inside a bucket by the average frequency corresponding to that bucket, 

are given in Figure 2.2. 

Piatetsky-Shapiro and Connell [84] compared these two classes of his-

tograms. Their main result showed that equi-width histograms have a much 

higher worst-case and average errors for a variety of selection queries than 

equi-depth histograms. 

IBM DB2-6000 uses an improved form of equi-depth histogram called com-

pressed histogram. In a compressed histogram, the n attribute values with the 

highest frequencies are stored separately in n singleton buckets, and the rest 

are stored as in an equi-depth histogram. By keeping values with high frequen-

cies in singleton buckets, the compressed histogram achieves greater accuracy 

in approximating the skewed frequency distributions that are typical of many 

real-life data sets. 

MaxDiff histogram [87] introduces another heuristic for partitioning the 

value domain into buckets. In a MaxDiff histogram with (3 buckets, there 

is a boundary between two "source parameter" values that are adjacent (in 

"sort parameter" order) if the difference between these values is ones the — 1 

largest such differences. Here, both "sort parameter" and "source parameter" 

can take frequency, spread, and area (defined as the product of frequency 

and spread) as possible choices. The "sort parameter" specifies the property 

(frequency, spread, or area) based on which the values in the histogram are 
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Figure 2 . 2 Histograms Approximating a Distribution 
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organized. Each bucket in the histogram is required to contain contiguous 

values of the sort parameter that does not overlap with the corresponding 

region of any other bucket. "Source parameter" specifies the property that 

is used to identify a unique bucketization. According to [88], MaxDifF(V,A) 

histogram achieves better approximation than previous well-known methods 

like equi-depth and compressed histograms. 

All of the above histograms make the uniform frequency assumption and 

approximate all frequencies in a bucket by their average. However, this as-

sumption rarely holds true in practice. For instance, in the above example, 

the equi-width histogram approximates all frequencies in the bucket (12, 13, 

14) with the same value 5.0, i.e., the average frequency. Clearly, this approxi-

mation is highly inaccurate, because the frequencies in this bucket varies from 

2 to 9. Assuming they all take the frequency of of 5 would result in erroneous 

estimation of the result size, hence lead to suboptimal query execution plans. 

As an example, consider the selection age > 13. The estimated result size, i.e., 

the number of tuples satisfying this condition, is 5，while the actual size of the 

result should be 9, which is almost the double of the estimated size. 

2.5.4 V-Optimal Histograms 

47, 46] are among the first to address the formal properties of histograms. 

They propose a class of histograms called “V-optimal，，histograms. They group 

contiguous sets of frequencies into buckets so as to minimize the variance of the 

overall frequency approximation. The goal of this scheme is to avoid grouping 

vastly different frequencies into a bucket. 

Let hi denotes the i-th bucket in the histogram (1 < z < where (3 is 

the number of buckets), rii denote the number of attribute values in bucket bi, 

and Vi be the variance of frequencies in bucket hi. Define the variance of a 

histogram to be V = 叫K.. The V-Optimal histogram on an attribute is 
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the histogram with the least variance among all the histograms using the same 

number of buckets. The V-optimal histogram has been proved to be optimal 

for equality selection and equality join queries under the following definition 

of optimality [87]: 

Definition 2.1 Let Q be the quantity to be estimated. Let i = 1 . . . TV 

be the set of attributes whose data distributions are required to estimate Q 

(typically, these are the inputs to the operator whose result size to be esti-

mated). For attribute let Hi be a collection of histograms of interest. The 

histogram Hi G Tii is optimal for Ai within Tii, if it minimizes the error in 

estimating the quantity Q. 

Here the term error has the following definition: 

Definition 2.2 Let T and T ' be the actual and estimated distributions of 

an attribute X in the result of a query q. Let D be the cardinality of the 

attribute. Then, the error in estimating the distribution of X is equal to the 

sum of squared differences between the actual and approximate frequencies of 

various values, i.e., 

D 

error = J2(f广 (2.1) 

i二1 

Though this kind of histograms are optimal under a definition of optimality 

that captures the average over all possible queries and databases, they are 

barred from practical usage due to the following reasons: 

1. In the original paper, the construction of such histograms involves and 

exhaustive (exponential time-complexity) enumeration of all possible his-

tograms and is clearly impractical. Though a dynamic programming 

based algorithm has been proposed in [88], the complexity is still high. 

Moreover, the meaning of the v-optimal histogram in [88] is actually not 
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the same as that first proposed in [47, 46]. In [88], V-optimal histogram 

does not group contiguous sets of frequencies into buckets, but rather 

group contiguous sets of values into buckets. According to [87]'s deno-

tation, it corresponds to using value as the sort parameter, while in the 

original design, V-optimal histogram use frequencies as the sort param-

eter. Though the original V-optimal histograms are optimal under the 

above definition, the histogram in [88] is no longer optimal. 

2. The V-optimal histogram requires every distinct attribute value be recorded, 

hence is not space-efficient. And an index of these values must be main-

tained to facilitate access to these values. 

3. Since the construction of V-optimal histogram is to group contiguous 

sets in the dimension of frequencies instead of values, building the V-

Optimal histogram requires a complete sorting on the frequencies of at-

tribute values. On the other hand, other types of histograms that aim at 

grouping contiguous sets in attribute values (e.g., the grouping in equi-

width histograms as illustrated in the above example) can often avoid 

this problem, because attribute values may have already been sorted for 

indexing. 

4. Though the V-optimal histogram built on the data distribution T is 

provable to be optimal (in the 2-norm error sense) for equality selection 

and join queries [87], it is not optimal for range selection queries. One 

the other hand, the V-optimal histogram built for the cumulative data 

distribution T � i s optimal for range queries, but not for equality selection 

or join queries [87]. This implies that no specific form of V-optimal 

histogram can be universally optimal for all types of queries. 



Chapter 2 Related Work 35 

2.5.5 Wavelet-based Histograms 

Matias et al [71] introduced a new type of histogram that is based on wavelet 

transform. The wavelet-based histogram is built by first performing wavelet 

decomposition on the data distribution (or the cumulative data distribution) 

of an attribute, resulting in a sequence of wavelet coefficients. Then the top 

m coefficients with the largest absolute values are chosen to compose the his-

togram. (The parameter m depends on the available storage space for the 

histogram.) 

Wavelet-based histograms are fundamentally different from previous his-

tograms in that they do not partition the underlying data into buckets as 

all previous histograms do. Actually it is a kind of compression of the data. 

Wavelet transform has been applied to data compression for a long time. (For 

example, the JPEG 2000 Compression Standard is based on wavelet transform, 

a.k.a, multi-resolution analysis.) The wavelet-based histogram is another suc-

cessful application of the wavelet-based compression techniques. 

In [71] the authors show by experiments that the wavelet-based histogram 

is superior to other existing methods in both accuracy and efficiency. Nonethe-

less, such histograms do not explicitly minimize the fluctuation of frequencies 

inside buckets. Moreover, the fast wavelet-transform algorithm requires the 

domain size to be power of 2, which is too restrictive in real-life databases. 

2.5.6 Multidimensional Histograms 

Traditionally, histograms were built only on single attributes and were thus 

one dimensional. But when a query involves multiple attributes in a relation, 

the selectivity depends on these attributes' joint data distribution, that is, the 

frequencies of all combinations of attribute values. Most current commercial 

database systems handle this problem by making the attribute value indepen-

dence assumption, that is, the data distributions of all attributes are assumed 



Chapter 2 Related Work 36 

to be independent of one another. Under such an assumption, the selectivity 

of a multiple-attribute query can be derived by multiplying the selectivities 

on all involved individual attributes. Thus, it suffices that the system only 

maintains histograms for single attributes. 

Real-life data, however, rarely satisfy the attribute value independence as-

sumption. Correlations among attributes are common. Making the attribute 

value independence assumption in these cases may result in highly inaccurate 

estimation of the selectivity of a multi-attribute query. In order to capture the 

joint data distribution, one often needs to construct a histogram on multiple 

attributes together. Such histograms are called multidimensional histograms. 

Muralikrishna and DeWitt [78] defined multidimensional equi-depth his-

tograms and presented an efficient algorithm based on spatial index parti-

tioning to construct them. [87] extended this technique to construct multidi-

mensional variants of other classes of histograms, such as the V-Optimal and 

MaxDifF histograms. It also proposed a method based on the singular value 

decomposition technique from linear algebra. Instead of using a single mul-

tidimensional histogram to approximate the data distribution, this method 

uses multiple but less expensive one-dimensional histograms. Though experi-

ments in [87] showed that this method performs well, it is worth noting that 

this method is limited to handling two dimensions. And its accuracy highly 

depends on that of the underlying one-dimensional histograms. 

71] extended the single attribute wavelet-based histogram to the multidi-

mensional case. Such extension is natural in that it follows the same procedure 

as that in the one-dimensional case, except it uses multidimensional wavelet 

decomposition and reconstruction instead of their one-dimensional counter-

part. 

21] argues that it is not wise if we build a multi-dimensional histogram for 

each combination of individual attributes in a relation, because the construc-

tion of those histograms is too expensive, and the approximation error for high 
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dimensional histograms is intolerably high. In real-life databases, it is actually 

not necessary to do so, because there are some attributes that are independent 

(or just weakly correlated) to one another. [21] proposed Dependence-Based 

(DB) histograms, a novel approach to building histogram synopses for high-

dimensional data base on the statistical interaction models. Its key idea is to 

break the synopsis of a high-dimensional data set into two basic components: 

(1) a statistical interaction model that explicitly identifies the (possibly) com-

plex correlation and independence patterns in the data; and (2) a collection 

of lower-dimensional histograms, built based on the model, that can be used 

to accurately approximate the overall joint data distribution. Experimental 

results with several real-life data sets verify the effectiveness of the proposed 

method. However, in step (1), it is still needed to examine all the possible com-

bination of attributes, which may be very inefficient when the total number of 

attributes involved is high. 

2.5.7 Global Histograms 

It is common that there exists more than one histograms in a database system, 

but normally the total storage space reserved for storing histograms is limited 

due to some constraint (say, the size of the catalog). It is worthwhile to 

study how to distribute the limited space to individual histograms so that the 

overall performance of the set of histograms is the best. Most previous work 

does not take this issue into consideration, and has focused on how to identify 

a good histogram for a single attribute (or multiple attributes in the case of 

multidimensional histograms) independent of other attributes/histograms. 

51] is the first to address this issue and it proposes the idea of global 

optimization of histograms. Single-attribute histograms for a set of attributes 

are optimized collectively so as to minimize the overall error in using the 

histograms. The idea is to allocate more storage space to histograms whose 
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attributes are more frequently used and/or distributions are highly skewed. 

While the accuracy of some histograms is penalized for being assigned less 

storage space, we expect the global error to be low compared to the traditional 

method of allocating equal amount of storage space to each histogram. 

The algorithm proposed to compute the global optimal histogram is based 

on V-Optimal histogram and dynamic programming, which implies that the 

computation cost would be high. More specifically, the time complexity of the 

algorithm is N^B) for a set of M attributes, where Ni is the number of 

distinct values in attribute z, and B is the total number of buckets. This high 

complexity precludes the proposed algorithm from practical use. The authors 

attempt to relieve the problem by proposing a greedy algorithm-based variant, 

but the time complexity is still high {0 {^{Nfhi ) )^ where bi is the number 

of buckets for the z-th attribute) and not suitable to use in real life database 

systems. 
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New Histogram Techniques 

In the previous chapter, we have highlighted some of the drawbacks with ex-

isting histogram techniques. Based on those observations, in this chapter, we 

propose two new histogram techniques — the Piece wise Linear Histogram and 

A-Optimal Histogram. The piecewise linear histogram addresses the problem 

of the uniform frequency assumption in previous heuristic-based histograms. It 

employs piecewise linear regression techniques to approximate the underlying 

data distribution. We show by experiments that it outperforms wavelet-based 

histogram, which is claimed to be the histogram with the best performance up 

to date. This result has been reported in [111]. 

The A-Optimal histogram is proposed as an alternative to the V-Optimal 

histogram. Unlike V-Optimal histogram that seeks to minimize the average 

squared error of the data distribution approximation, it directly optimizes the 

average absolute error, which is a widely used error metric in the literature. 

We propose efficient algorithms for the construction of A-Optimal histograms. 

3.1 Piecewise Linear Histograms 

As mentioned in Chapter 2, most heuristic-based histograms make the uniform 

frequency assumption, that is, all attribute values inside the same bucket are 

assumed to have the same frequency. Based on such an assumption, they 

39 
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approximate the frequencies in bucket by their average. Since there may be 

cases where the actual frequencies in a bucket have large variations, the uniform 

frequency assumption is a source of errors. 

Rather than roughly assuming each value appears with equal frequency 

inside a bucket, we now attempt to approximate the data distribution inside 

a bucket. Parametric methods can be used, i.e., to approximate the actual 

distribution with a known distribution function, such as normal, Pearson fam-

ily, and Zipf distributions. However, this method suffers from the following 

problems: 

(1) In order to use this method, the "shape" of the actual distribution inside 

every bucket must be known beforehand to choose a suitable model function, 

which is almost impossible in real-life applications. 

(2) Since distributions usually vary from bucket to bucket, there is no single 

distribution which can fit the distributions in all buckets. Selecting a suitable 

distribution function for each bucket is non-trivial. 

(3) The number of distinct values in a bucket are usually small. Under 

such circumstances where the sample size is small, the conventional parameter 

estimation methods are no longer valid, because they are developed under the 

assumption of large sample size. 

So, parametric methods are not appropriate to solve this problem. Non-

parametric methods such as curve fitting is a better choice in this setting 

where there is little a priori knowledge. For example, recently there appear 

efforts in using piecewise constant approximation for similarity search in time 

series databases [53]. In theory we can approximate the data distribution in 

a bucket with a polynomial of any order. We choose to use the simplest one, 

i.e., linear least squares regression. The rationale here is that the fitting using 

higher order polynomials may incur more cost, and does not necessarily lead 

to better estimations. 
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3.1.1 Construction 

Suppose we want to approximate the data distribution of an attribute X of 

relation R with B buckets. The construction of the piecewise linear histogram 

consists of two steps, which are described below. 

Partition 

In this step, B—1 cutting points are determined to partition the domain T> into 

B buckets. Since the total number of possible partitions is in the exponential 

order of the domain size D, determining the best partition is NP-hard [67]. 

This problem is known as optimal knot placement in the statistics literature 

and there is no efficient solution yet [88]. Instead of seeking the best partition, 

we propose a heuristic which can perform well in this setting. We define the 

slope Si as 

� ’ = ( 3 . 1 ) di+i — tti 

and the slope change r̂  as 

Ti 二 Si - Si-i (3.2) 

The heuristic is to put the cutting points at where the slopes change most 

abruptly. In another word, the bucket boundaries are placed at where the 

slope changes r are the largest (in absolute value). It ensures that the number 

of abrupt changes of slopes inside a bucket is as small as possible, thus the 

frequencies are more amiable to linear regression. 

For implementation of this heuristic, we can simply get the second order 

derivative of the frequency series, and put the B — 1 cutting points at where 

the second order derivatives are the largest. 
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Regression 

After partitioning the domain, we perform linear regression on the frequencies 

inside each bucket and store the coefficients obtained. Let ai be the attribute 

value of the z-th item in the bucket, and fi be the frequency of this z-th item. 

We can relate fi and ai by the following equation: 

fi = pcii -\-q + Ci (3.3) 

where Ci is the residual. The estimation of p and q can be computed by 

A p A 一 

p = f -qa 
. = ( 3 . 4 ) 

- ^y 

where / and a are the averages of the frequencies and attribute values 

inside the bucket respectively. 

Since linear least squares regression explicitly minimize the mean square 

error of estimation inside a bucket, we can conclude that the regression coeffi-

cients obtained this way will incur least errors in the 2-norm sense in selectivity 

estimation. 

In real life databases, the values that appear in an attribute of a relation 

often constitute only a small portion of the domain. Thus, there are some 

buckets with all frequencies equal to zero. We call such buckets as 0-buckets. 

For 0-buckets, it is not necessary to approximate the frequencies (which are 

all zeros) with linear regression and store two coefficients. We propose a more 

storage efficient method, i.e., for the x% of the 0-buckets which contain the 

largest number of values, we just store the boundaries of those buckets, and 

all the values inside the buckets defined by those boundaries are assumed to 

have a zero frequency by default. For the other buckets, we perform linear 

regression and store the resulted coefficients as mentioned before. 

Clearly, the time complexity for both the partition and regression steps are 

0(Z)), where D is the domain size. 
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3.1.2 Usage 

After obtaining the coefficients, we can now deal with both range and equality 

queries. For instance, given an equality query X — a^ we first identify the 

bucket that a belongs to. If this bucket is a 0-bucket, the estimated frequency 

is 0. If not, then use the coefficients q} corresponding to the bucket to 

calculate the estimated frequency of a according to the following formula: 

A 

f a = ” a + q (3.5) 

The calculation is very simple. And the process of identifying the appropriate 

buckets can be done in time 0(B), where B is the number of buckets. 

3.1.3 Error Measures 

We can measure the error of estimating the size of a query result in several 

ways. In this thesis, we use some of the most commonly used error measures 

in the literature, which are in line with [71, 87 . 

Let Vi be the actual result size of a query g“ and let Vi be the estimated 

result size of the query. We use the following three different error measures: 

1. The absolute error oi a query is defined as the absolute difference between 

Vi and Vi： 

e � b s = - (3.6) 

2. Sometimes, one is more interested in the error as it compares to the 

result size, rather than the magnitude of the the error itself. The relative 

error as a fraction of the result size is computed as: 

e - = ^ ^ (3.7) 

This definition is slightly different from the one in [71], which is not 

defined when Vi = 0. 
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3. In order to combine the above two error measures, we define the combined 

error of a query as: 

e?omb = m i n { a x e f s， " x e r i } , (3.8) 

where a and jS are positive constants. These two parameters in the 

combined error reflects the importance of having either a good relative 

error or a good absolute error for the estimation. For example, for very 

small frequencies, it may be good enough if the absolute error is small 

even the relative error is large, and for large frequencies, the absolute 

error may not be as meaningful as the relative error. 

Now that we have defined the error measures for individual queries, we can 

choose a norm by which to measure the error of a collection of queries. Let 

e = (ei, e2, . . . , eg) be the vector of errors over a sequence of Q queries. We 

assume that one of the above three measures is used for each of the individual 

query errors ê -. For example, for absolute error, we can write ê  = e严 .W e 

define the overall error for the Q queries by one of the following error measures: 

1. The 1-norm average error: 

= $ E et (3.9) 

2. The 2-norm average error: 

= (3.10) 

3. The infinity-norm average error: 

|e||oo = max {e^-}. (3.11) 
1<1<Q \ ‘ 
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3.1.4 Experiments 

In previous sections, we presented a new type of histogram for selectivity 

estimation. In this section, we evaluate the accuracy of this method and 

compare it with wavelet-based histograms, which have been claimed to perform 

best in existing histogram techniques [71]. 

Test Data 

We use two synthetic data sets to test the accuracy of histograms. In data set 

1, the value set (V) is exactly equal to the domain (D), that is, each value in 

the domain appears in the corresponding relation. In data set 2, we set the 

value set to a small portion of the domain in order to study the effect of zero 

frequencies. Some attribute values in the domain T> do not show up in the 

relation, and thus do not belong to the value set V. Data set 2 is the same as 

that used in [71]. 

In either case, the frequency set (for values in V) is generated according 

to Zipf distribution. For a relation size T and domain size D, the frequencies 

generated by the Zipf distribution are 

U = T for all 1 < z < D. (3.12) 

The skewness of the Zipf distribution is a monotonically increasing function 

of the z parameter, starting from z = which is the uniform distribution. 

It has been observed by several linguists and other researchers that subjects 

as diverse as income distributions and frequency distributions of words are very 

similar to Zipf distributions. A common claim in the database literature is that 

many attributes in real-life databases contain a few domain values with high 

frequencies and several with low frequencies [15], and hence can be modeled 

well by Zipf distribution. 

We use the following setting in our experiments. For both data sets, the 

size of the value set is set to be 500, that is, there are 500 distinct values 
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Figure 3.1 Test Data Sets 
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appearing in the corresponding attribute of the relation. The frequency set is 

generated according to the Zipf distribution with parameter z set to 1 and 1.5 

respectively in two group of experiments. The number of tuples T is set to 

10 .̂ In data set 2, the spreads of the value set (that is, the spread between 

one domain value with non-zero frequency and the next such domain value) 

follow the cuspjmax distribution with Zipf parameter z — 1.0. The two test 

data sets are shown in Figure 3.1. 

We also use the same amount of storage for different methods. The default 

storage space is 42 four-byte numbers (to be in line with [71]). In data set 1, 

there is no 0-bucket in the resulting piecewise linear histograms, for every value 

in the domain appears in the relation at least once. For data set 2, 0-buckets 

are needed. The performance of the piecewise linear histogram is relatively 

constant for a range of p values. In our experiment, we set {p%) to be 30%. 

Query Sets 

We tested the histograms using four different query sets: 

k： {X = h\ hev} 
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B:{X = b\beV} 

C:{x<b\bev} 

J)： {X <b\bev} 

They are the same as those used in [71]. Different histogram methods need to 

store different types of information. The wavelet-based histograms store two 

numbers per coefficient, while our piecewise linear histograms need to store 

one numbers per bucket for 0-buckets (lower boundary) and three numbers 

per bucket for other buckets (the lower boundary of the bucket and the two 

coefficients obtained by regression). 

Results 

Table 3.1-3.2 show the estimation errors of piecewise linear histograms, Haar 

wavelet-based histograms, and linear wavelet-based histograms over data set 

1. Since in data set 1, the value set is exactly the same as the domain, query 

sets A and B are identical, and so are C and D. Thus we only show the 

results for query sets A and C. We find that our method is very good for the 

query set A (equality selection queries) in all error measures. For query set C 

(range selection queries), it is also better than wavelet-based histograms, with 

the exception that the average relative error of piecewise linear histograms is 

slightly higher than that of linear wavelet-based histograms. 

In addition to the above experiments, we have also studied the effect of 

storage space for different methods. Figure 3.2 plots the result of one set of 

our experiments from query set A and C over data set 1. The setting of va 

lue set and frequency set is the same as in the above experiments. From the 

figures, we see that for equality selection queries (query set C), piecewise linear 

histograms significantly outperform wavelet-based histograms over the whole 

range of number of buckets. For equality selection queries (query set A), the 

performance of piecewise linear histograms is not as good as that for equality 

queries, but is still better than the performance of wavelet-based histograms 
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Figure 3.2 Effect of Storage Space for Various Histograms over Data Set 1 
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Error Measure Piecewise Linear Haar Wavelets Linear Wavelets 
||e1i 1.6691 3.9062 3.1989 

0.1360% 0.3636% 0.2853% 
|ieabs|i2/r 0.3010% 1.3278% 0.8657% 

3.1416% 14.7214% 13.8861% 
iieComb||i/j<，a = l , � = 100 0.00142 0.00217 0.00156 
j| 严mb||2/r，a = 1,(3 = 100 0.00248 0.00330 0.00288 

Table 3.1: Errors of Various Methods for Query Set A over Data Set 1 

Error Measure Piecewise Linear Haar Wavelets Linear Wavelets 
||e1i 0.0466 0.1031 0.0423 

i|eabs||i/T 0.6066% 1.3850% 0.9177% 
0.8775% 1.9706% 1.7249% 

lie—iioo/r 3.1416% 8.1095% 10.6293% 
|ipmb||i/2^，a = l , p = 100 0.0091 0.0321 0.0246 
jiec�mb||2/:r,a = 1,(3 = 100 0.0136 0.0312 0.0277 

Table 3.2: Errors of Various Methods for Query Set C over Data Set 1 

over a large range of number of buckets. It is worth noting that the accu-

racy improvement of our proposed piecewise linear histograms over wavelet-ba 

sed methods is particularly significant when the storage space is small. As 

the storage space for histograms tends to be small in database systems, this 

improve ment is a very attractive property of our proposed method. 

As the skew of data distribution may affect the performance, we study the 

effect of the Zipf skew parameter z by a series of experiments. The results 

are shown in Figure 3.3. These figures reveal another nice property of our 

proposed piecewise linear histogram, that is, the performance of piecewise 

linear histogram does not degrade rapidly when the skew gets larger, as other 

existing methods often do. Interestingly, the accuracy is even improved when 

z increases from 1 to 1.5. 

Results over data set 2 are similar to those over data set 1. This implies 

that the performance of piecewise linear histograms is not much affected by the 

effect of zero frequencies, due to the introduction of 0-buckets in our method. 
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Figure 3.3 Effect of Data Skew for Various Histograms over Data Set 1 
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Error Measure Piecewise Linear Haar Wavelets Linear Wavelets 
0.0291% 0.0460% 0.0657% 

i ie—iz/T 0.1395% 0.8464% 0.3362% 

Table 3.3: Errors of Various Methods for Query Set A over Data Set 2 

Error Measure Piecewise Linear Haar Wavelets Linear Wavelets 
0.1250% 0.2000% =0.3017% 

i i e — i s / r 0.3910% 0.8439% 0.9107% 

Table 3.4: Errors of Various Methods for Query Set B over Data Set 2 

Table 3.3-3.6 present the selectivity estimation errors for various methods. 

Figure 3.4 depicts the effect of storage space on the four query sets. 

We also tested our piecewise linear histograms using data sets generated fol-

lowing other distributions. For example, the comparison results of piecewise 

linear histograms and wavelet-based histograms over a normally distributed 

data set are shown in Figure 3.5. The performance of piecewise linear his-

tograms is comparable to that of wavelet-based histograms, and even better 

in some cases. 

3.1.5 Conclusion 

In previous sections, we identified that the uniform frequency assumption is a 

source of error in estimation. We deal with this problem by proposing a new 

type of histograms called piecewise linear histograms. We performed extensive 

experiments to compare the accuracy of the piecewise linear histogram and 

that of the wavelet-based histograms, and to study the effect of storage space 

Error Measure Piecewise Linear Haar Wavelets Linear Wavelets 
||eabs||i/r 0.8161% 13.8412% 14.1975% 
i|eabsi|2/r 1.1658% 23.9636% 24.6323% 

Table 3.5: Errors of Various Methods for Query Set C over Data Set 2 
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Figure 3.5 Comparison of Various Histograms over a Data Set Following 
Normal Distribution 
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and data skew. The experimental results verify its superiority over wavelet-

based histogram techniques. 

The algorithm proposed in this chapter is mainly for static construction of 

the piecewise linear histogram. In Chapter 5, we will study how to maintain the 

piecewise linear histogram so as to have it reflect the changes in the underlying 

data. 

3.2 A-Optimal Histograms 

Given the types of queries we wish to support and a constraint on the space 

we may use, it is often of interest to study what representation of the data 

minimizes the expected error (for a given error metric) of the selectivity estima-

tion. The problem of finding an optimal approximation of a data distribution 

has been investigated extensively in the statistics and numerical analysis con-

text. For example, in statistics, the problem has been posed in connection 

with non-parametric density estimation as that of constructing a histogram 

of a given data distribution. But the efforts have focused on minimizing the 

approximation error without taking space constraints into consideration. 

46] is the first to address this problem in the database community. It for-

mally studies which histogram representation of the underlying data minimizes 

the Sum Squared Error (SSE, See Definition 2.2), and proposes a new type of 

histogram called V-Optimal histogram that is shown to minimize the SSE of 

equality-join and equality selection queries. Though it has such nice theoreti-

cal properties, V-Optimal histograms are unsuitable to use in practice, for they 

are hard to compute (with an exponential time complexity) and involve storing 

all the distinct attribute values. [26] uses a variant of the original V-Optimal 

histogram and proposes a Dynamic Programming algorithm to compute it. 

In the literature, Average Absolute Error has been extensively used as an 

error metric, which is also the case in [26]. In this chapter, we will study 
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how to directly minimize this error metric instead of minimizing the SSE, and 

propose a new type of histogram called A-Optimal Histogram. 

We first define the Sum Absolute Error as follows. 

Definit ion 3.1 Let V = {vi\ 1 < i < N}{i < j iff 巧 < vj) be the totally 

ordered set of distinct values in a given attribute X^ where N be the number 

of distinct values. Let F = { / i ， / 2 , … , / a t } and F' = { / { , . . . , / j ^ } be 

the frequency sets, where fi and / / are the actual and estimated frequencies 

of Vi respectively. Then the Sum Absolute Error (SAE) in approximating the 

distribution of X is equal to the sum of absolute differences between the actual 

frequency set F and the estimated frequency set F', i.e., 

N 

= (3.13) 
乂=1 

When computing a histogram of F with B buckets {B << N), we normally 

partition F into B non-overlapping buckets (or, intervals) < i < B) 

where bi and €{ are the starting and ending points of the i-th bucket, and 

approximate the frequencies in this bucket with a single summary element 

ESTi, i.e., set / j = ESTi for bi < j < e“ Based on Definition 3.1, we can 

define the A-Optimal histogram as below. 

Definition 3.2 For attribute X with value set V and frequency set F, let 7{ 

be a collection of histograms constructed by following the above procedure. 

The histogram Hk G H is A-Optimal for X within if it minimizes the Sum 

Absolute Error, 

B 

SAE, 二 ̂ 离 { S A E J = m i n { ^ [ |力—EST.A) (3.14) 
P P ' 1 ' 1 

t二 1 J 二 bp’t 

where 6p,“ Cp，； and ESTp î are the starting point, ending point and the approx-

imation element of the i-th bucket in histogram Hp respectively. 
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There are a number of possible choices for ESTi, such as the mean, median, 

and the geometric mean of the frequencies in a bucket. In this chapter, we 

consider two most natural choices, mean and median. We denote them by 

A-Optimal (mean) and A-Optimal (median) respectively. 

In either case, since we have fixed the choice of ESTi, the problem of com-

puting the A — Optimal histogram reduces to that of finding the boundaries of 

the B buckets of the desired histogram. In the following sections, we present al-

gorithms for determining the "optimal" boundaries in both A-Optimal(mean) 

and A-Optimal(median) histograms. They are primarily based on dynamic 

programming, similar to that proposed in [26] for computing V-Optimal his-

tograms. 

3.2.1 A-Optimal(mean) Histograms 

In A-Optimal(mean) histograms, we use the mean of frequencies inside a 

bucket as EST. That is, 

ESTi = AVG{[bi, e,]) = 广 ( 3 . 1 5 ) 
ei — bi + I 

Similar to that in Definition 3.2, we can define the Sum Absolute Error 

(SAE) for any interval [z, j] , 

3 

SAE{[i,j]) = J2\fk- AVG{[iJ])\ (3.16) 
k—i 

We now describe the algorithm for computing the A-Optimal (mean) his-

tograms based on dynamic programming. We define k) to be the min-

imum SAE for the first i elements in the frequency set, i.e., { / i , /2 ,…， f i } - A 

nice property of SAE* is that 

SAE^i, k) = min k - 1) + SAE{[j + 1, z])}， （3.17) 
i<j<i 
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Hence, the solution for k buckets can be reduced to the case of A; — 1 by exam-

ining all possible boundaries between the first k — 1 buckets (which is already 

optimal for a given pair of i and k) and the fc-th bucket. This observation 

suggests that we use dynamic programming to calculate SAE*{i, k) for all 

1 < z < Â  and 1 < k < B, m increasing order of k, and for any fixed k, in 

increasing order of i. The final result is SAE* 二 SAE*[N, B). All computed 

SAE*{i, k) are stored in a table for reference by the computation of a new 

SAE*{i, k') where k' > k. The boundaries corresponding to the SAEs are 

obtained by maintaining an array that keeps track of the bucket boundaries of 

the partial solutions evaluated during the run of the algorithm. 

A total of 0{NB) calculations are needed to get SAE*{i^ k), each of which 

involves looping over 0{N) values of j in Eq. 3.17. For each j, we perform 

table lookups for SAE*(j,k — 1) and SAE{[j + 1, i]) (It is precomputed by 

using the algorithm described in the next paragraph.), which takes constant 

time. Thus, the time complexity of the dynamic programming algorithm is 

In the above, we have assumed that the values of SAE{i^j){l < z < j < A )̂ 

are already available for use. We now consider how to compute these values. 

According the definition, we may have an outer loop over all is, and for a fixed 

i, an inner loop over all possible js. In the inner loop, we compute SAE{i,j) 

according to Eq. 3.16. Here we do not need to calculate AVG{[i,j]) in each 

inner loop. It can be simply calculated by the following equation: 

• ( M ] ) 二 刚 , (3.18) 
J 一 z + 1 

where S is defined as the cumulative frequencies, i.e., 
i 

S\i] = Y . f k (3.19) 

Thus, we only need 0(N) time to precompute the cumulative frequencies S, 

and after that, any AVG[[i^ j]) can be computed in constant time. The overall 

time complexity of obtaining all SAE(\i^j]) is 
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3.2.2 A-Optimal(median) Histograms 

We now turn to the computation of A-Optimal(median) histograms, where 

EST is chosen to be the median of the frequencies inside a bucket, i.e., 

ESTi — MEDIAN{[bi^ e j ) . It is well-known in statistics that for a given set 

of values = 1 ,2 , . . . , m), their median is the estimate that minimizes 

the estimation error in a L-1 norm sense. That is, 
m 

median(xi,... , Xm) = y = argmiriy ^ ^ \xi — y\. (3.20) 

A brief proof is given below. 

Proof Let 
m 

f{y) 二 丨 冗 y 
i二 1 

To get the value of y where f[y) is minimized, we set the first difference of 

f ( y ) to zero. Since 

m 

f{y) = sgnOi - y) 
i=l 

= ( # of Xi^s larger than y) - ( # of Xi^s smaller than y), 

where 

1, x > 0 

s g n � = < 0, J： = 0 , 

-1 , X < 0 
\ 

to set f{y) = 0 implies to set 

# of Xi^s larger than y = # of x̂ -'s smaller than y 

Clearly, this condition is satisfied if and only if y is the median of the set of Xi 

values. • 
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It immediately follows from the above observation that 

Theorem 3.3 Of all possible choices of the approximation element ESTi{l < 

i < B), the median (i.e., MEDIAN\[bi, e,-]) is the one that leads to the small-

est SAE. 

The computation of A-Optimal(median) histograms is similar to that of 

A-Optimal(mean) histograms, except that we use MEDIAN{[i^j]) instead of 

AVG{[iyj]) to compute SAE([i,j]). Since medians can be computed in linear 

time [7], the SAE{[i^j]ys can still be calculated in 0{N^) time, and the time 

complexity of the dynamic programming part remains 0{N^B). 

3.2.3 A-Optimal(median-cf) Histograms 

In histograms that use the average of values in a bucket as the approximation 

element, the errors of selectivity estimation for range queries (in the form 

of a < X < b^ oi X > a, oi X < b, etc.) only come from the boundary 

buckets where the end points of the selection (say, a or b) fall in, while the 

interior buckets (those buckets that satisfy the selection condition but do not 

contain any end point) incur no error. That's because in an interior bucket 

i, f'j = i^i - bi + l)AVG{[bi,ei]) = fh s � w e can use (e,- - hi + 

\)AVG{\})i^ ti]) to estimate the total frequencies inside the bucket i without 

introducing any error. 

However, when median is used as the approximation element, we can no 

longer guarantee that the interior buckets incur no error in selectivity esti-

mation of range queries. Therefore, the estimation error for range queries 

is expected to be larger than that where mean is used. To overcome this 

problem, we propose to build histograms on the cumulative frequencies Si(= 

^ ^ < N) instead of on frequencies. We call such histograms A-

Optimal(median-cf) Histograms. 
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Since the only different between the A-Optimal(median-cf) histogram and 

the A-Optimal(median) histogram is that it uses Si instead of / “ the algo-

rithm for computing A-Optimal(median-cf) histograms can be easily derived 

from that for computing A-Optimal(median) histograms. However, since the 

sequence of Si is a non-decreasing function of z, we propose an algorithm that 

can incrementally computing all SAE{[i,j])(\ < i < j < N) in 0{N'^) time 

instead of O(N^). This improvement is significant as N is usually large in real 

applications. 

The algorithm is shown in Algorithm 3.1. The basic idea, underlying this al-

gorithm is to compute MEDIAN([i, j]) and SAE([i, j])hRsed on MEDIAN([iJ-

1]) and SAE([i^j — 1]) by maintaining several important state variables includ-

ing whether there is any data element equal to the current median, and if so, the 

number of such elements and their positions, and so on. MEDIAN([i^ j]) and 

SAE([i,j]) can be computed based on MEDIAN({t, j— I]) and 5 � 4 E ( [ ？ j —1]) 

by acting according to various combinations of these state variables. 

The selectivity estimation using A-Optiinal(mediaii-cf) histograms is dif-

ferent from that of the two previous A-Optimal histogram variants, because 

A-Optiinal(mcdian-cf) histograms arc computed based on cumii 1 ative frequen-

cies. If tlic estimated cumulative frcqucncics using the histogram is denoted 

by 1 < i < /V), Uieii / / , the selectivity estimation of an equality selection 

query of the form .r = i is coniputed by f'l 二 ‘S',' — ,. Foi’ a range selection 

qiKTy .r < i’ the scloctivity is ostiniatofl directly l)y .S',. 

3.2.4 Experiments 

\\c test t he proposed tlircc variants of A-Opt iiiial histograms and compare' 

their jicrforinaiice with that of \'-()jjlinial histograms. Tli(�test (hita used 

here is t he same as data set 1 us(�(l in Sect ion 3.1. 

All of the four types of histograms require to store two foilr-bytc iiuiiibcrs 
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Algorithm 3.1 Algorithm for Computing Sum Absolute Errors in A-
Optimal(median-cf) Histograms 

for i = 1 to yV do 
flag 二 0; ind — i; med = Sf, numofeq — 1; 

/* flag: 0 if at least one data element is equal to the median; 1 otherwise; 
ind: the index of the data element that is equal to the median; 
med: current median; 
numofeq: the number of data elements that are equal to the median 
for j — i 1 to N do 

if Sj > med /*the data element is larger than current median*/ then 
if flag = 0 then 

if Sind+i = med then 
ind = ind + 1; 

numofeq = numofeq + 1; 

else 
if j — ind > ind — i then 

numofeq = 1; 
med = (Sind+i + med)/2] 
ind = ind + 0.5; flag = 1; 

else 
SAE{iJ) = SAE{i,j-l)^Sf, 

end if 
end if 

else 
ind = ind + 0.5; 
med = SiTid-, 
flag = 0; numofeq = 1; 
SAE{iJ) = SAE[i,j - 1) - med+Sj； 

end if 
else 

SAE{i,j) = SAE{z,j-l)', 
end if 

end for 
end for 
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per bucket: one for the left boundary, the other for the approximation ele-

ment EST. We compare their performance under a wide range of amount of 

available storage space for histograms. The results are shown in Figure 3.6. 

As expected, for equality selection queries (query set A), the A-Optimal(median) 

histogram performs best when average absolute error is used as the error met-

ric, and the V-Optimal histogram has the best accuracy when the error metric 

is average squared error. The performance of A-Optimal (mean) histograms is 

comparable to that of V-Optimal histograms on equality selection queries. For 

range selection queries (query set C), A-Optimal(median-cf) histograms offer 

the best accuracy. This is no surprise because these histograms are built di-

rectly on the cumulative frequencies. The A-Optimal(median) histogram does 

not perform well for query set C, as we have expected. The A-Optimal(mean) 

offers better accuracy than V-Optimal histograms over query set C. 

As described above, no individual type of histogram is better than other 

types in all cases. So what kind of histogram to use in a database system 

depends on the specific requirements of users. 
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Figure 3.6 Accuracy of Selectivity Estimation using Various Histograms over 
Data Set 1 
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Chapter 4 

Global Histograms 

In the histogram techniques developed in the previous chapter, we have focused 

our discussion on building histograms for a single attribute without taking 

into consideration other attributes/histograms in the same database. In real 

applications, however, it is very common that there are multiple histograms in 

a database, with each of which dedicated to an individual attribute. Also, it is 

natural for a DBMS to impose an upper limit on the total storage occupied by 

these histograms. Then a question arises, that is, how to allocate this amount 

of available storage to the individual histograms in the same database in order 

to have the best overall performance? 

Assigning each histogram the same amount of storage space is the simplest 

strategy and it is easy to implement. But it does not take into account the 

fact that different attributes may have different data distributions and different 

query patterns. As an extreme case, suppose there are two attributes A and B, 

and a storage space for storing B{> 2) histogram buckets. The frequency set 

of A follows the uniform distribution (i.e., each distinct value in this attribute 

appears with the same frequency F), and frequency set B is highly skewed. If 

we follows the strategy mentioned above, B12 buckets are allocated to A and 

B respectively. But clearly, one bucket is enough for attribute A, since we only 

need to store F, and we can reconstruct the frequency set of A without any 

loss of information. Thus, B /2 — 1 are "wasted" on A. In fact, if we allocate 

64 
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these 3/2 — 1 buckets to the highly skewed attribute B as additional memory 

space, the accuracy of histogram on B will be improved, and consequently the 

overall performance of histograms on A and B will be improved. 

51] takes a global view of the multiple histograms in a database and pro-

poses the idea of global optimization of histograms. All the single attribute 

histograms for a set of attributes are optimized collectively in order to min-

imize the overall error in the approximation of original data distributions. 

However, as we have mentioned in Chapter 2, the algorithm proposed in [51 

to compute the global optimal histogram, which is called GOHDP, is based 

on V-Optimal histogram and dynamic programming, which implies that the 

computation cost would be high {0{Yji=i ^ i B ) ) . Hence, the global optimal 

histogram proposed in [51] is not suitable for practical use. 

In this chapter, we extend the two histogram techniques proposed in Chap-

ter 3 as well as the wavelet-based histogram to the global context. We propose 

wavelet-based global histograms, piecewise linear global histograms, and A-

Optimal global histograms, and compare their performance with that of the 

global optimal histogram in [51]. 

During our discussion in the following sections, we assume that the at-

tributes involved in the global histogram come from the same relation, which 

implies that the total frequencies in each individual attribute are identical 

(equal to the cardinality of the relation). In case that the attributes are se-

lected from different relations, or the total frequencies of the attributes are not 

the same, we can simply normalize the frequencies by dividing them with the 

total frequencies of the corresponding attribute. 

4.1 Wavelet-based Global Histograms 

Wavelet transform has proved to be an efficient and accurate approach to con-

structing histograms [71]. In this section, we propose to use wavelet-based 
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algorithms to construct global histograms. While the global histogram ob-

tained this way is not guaranteed to be v-optimal, and thus is not as accurate 

as GOHDP, the complexity of the wavelet based algorithms is significantly 

lower than that of GOHDP. 

Since the definition of "optimality" may vary according to different error 

metrics, we have to propose different kinds of algorithms to serve different 

optimality definitions. Here we present two algorithms. The first one is for 

the 2-norm average error metric using orthonormal wavelets. This algorithm 

has a low complexity at NiB). The second one has a higher complexity 

at A^t(log Â )̂ log J9), but it is more general, since it can be used for 

any p-norm (p = 1,2，oo,...) average error metric using either orthonormal or 

non-orthonormal wavelets. 

4.1.1 Wavelet-based Global Histograms I 

Although the results shown in the following paragraphs apply to any orthonor-

mal wavelets, here we use Haar wavelets for its ease of exposition. Suppose 

S is an array of N values: S = [6'(0), 5 ( 1 ) , . . . — 1)]. We assume N is 

a power of 2 to apply the Haar wavelet decomposition (otherwise we can use 

various padding schemes to increase the size of to a power of 2). We first 

normalize S to obtain a sequence Sj at level j: 

Sj = [5'i,0, • . . , Ŝ j，Ar—ij, (4.1) 

where j = log N and Sj,k = S{k)l\/^. 

The decomposition of S can be done using the following recursive formulas: 

= 2 
A — 5\.+1，2A:+1) 
氏 & 二 2 

for 0 < z < j — 1 and 0 < k < 2' — 1. The result of the Haar wavelet 
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decomposition is the sequence 

A A A 

•5̂ 0,0，5̂ 1’0, 5^1,1，...，5^j-i’2J-l-lj. 

Define as the sum of squares of the elements in the sequence at level i, 

i.e., 

2^-1 3-1 2^-1 

仏-二 I：絡 + 1:1：幾 
k:0 d=i k=0 

In the signal processing community, as described above is known as the 

energy of the signal (here the signal is just the sequence). It is well-known that 

the Haar wavelet transform "preserves energy", as indicated by the following 

theorem. 

Theorem 4.1 Given the above definition of we have $0 = = . . . = 少 j . 

Here we present a proof sketch of this theorem. 

Proof Sketch The above proposition is equivalent to =少 i+ i , where 0 < 

i < j — I. Following the definition of we have 

k=0 k=0 k=0 

= + 乾 k) — ^ ^l+l^k 
k=0 k=0 

—1 1 1 1 1 2 …—1 
— 1 , 2 A; + 2^i+l,2k+l + + 3$f+l，2A;+l) — [ ^l+X.k 

k=0 k=0 

= 0 . 

Hence, =少1 = . . . = 少 j . | 

To construct the global histogram, we keep only B wavelet coefficients of 

the decomposition result, for some B corresponding to the desired storage us-

age, and set other coefficients to zero. For each attribute z (1 < z < M) , 
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we denote the original decomposition result as <S‘’o, the sequence after setting 

some wavelet coefficients to 0 as <S(o, and their corresponding sum of squares 

as 少 a n d q respectively. Obviously the L2 distance between q 

and 二 1 will be minimized if we choose the B largest (in absolute value) 

coefficients to keep. Based on Theorem 1, it immediately follows that of all 

possible choices of the B coefficients, keeping the B largest coefficients (in ab-

solute value) will lead to the minimum L2 distance between the reconstructed 

sequences and the original sequences. Hence we have the following algorithm 

for computing the wavelet-based global histogram: 

Algorithm 4.1 Algorithm for Computing Wavelet-based Global Histograms 
I 

for i = 1 to M do 
perform wavelet decomposition of sequence Si., 
record the wavelet coefficients sequence Si^ 

end for 
find the B largest coefficients (in absolute value) from <Si’o(l S i S M) ; 
store the coefficients and their corresponding indexes 

In this algorithm, it takes 二 1 Ni) time to compute the wavelet de-

composition, and 0{B [ � N i ) time to find and store the B coefficients. 

Hence the overall time complexity for computing wavelet-based histogram I 

is 0(B Ni). When Ni = N] = . . . = Nm, the complexity is simply 

0{BMN). 

4.1.2 Wavelet-based Global Histograms II 

The algorithm proposed in the previous section has a very low time complexity. 

However, it can only be employed when orthonormal wavelets are used as the 

underlying wavelets, and when the optimality is defined in the 2-norm average 

error sense. Sometimes we may be interested in using other sorts of wavelets, 

such as linear wavelets and others in the biorthogonal wavelets family, to gain 

better accuracy. Also, we may also use other norms of error metrics to measure 
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the optimality. In this section, we propose a more general algorithm that is 

suitable for any kind of wavelets and any p-norm error metric. 

Given an error metric and the number of buckets B for the histogram, the 

goal is to find the B wavelet coefficients from all possible choices such that 

keeping these coefficients and regarding other coefficients as zero can lead to 

the smallest error. However, this goal is hard to obtain, because finding the 

optimal solution requires exponential time complexity. Instead, we resort to 

a greedy algorithm as shown in Algorithm 4.2. It is derived from the single 

attribute version proposed in [71]. 

Algorithm 4.2 Algorithm for Computing Wavelet-based Global Histograms 
n 

for 2 = 1 to M do 
perform wavelet decomposition of sequence Si； 

record the wavelet coefficients sequence <Si’o 
end for 
r = {Si,o\i<i<M} 
Selected = {the B largest coefficients (in absolute value) from F} 
Nat Selected = V — Selected 
for z = 1 to B do 

inc = the coefficient from Not Selected whose inclusion into Selected 
would lead to the largest reduction in error 
Selected = Selected U {inc} 
Nats elected = Not Selected — {inc) 
dec = the coefficient from Selected whose deletion would lead to the largest 
increase in error 
Selected = Selected — {dec} 
Not Selected = N at S elected U {dec} 

end for 
store the coefficients in Selected and their corresponding indexes 

The straightforward method of performing each iteration of the greedy 

method requires Ni) time, and thus the total time is 0{B Ni). 

71] proposes a dynamic programming tree structure and shows that using this 

structure, the coefficients can be chosen in 0{N{log N) log B) time (for single 

attribute histograms). This structure can be adopted to the computation of 
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global histograms. Since this extension is trivial, we do not go into details 

here. Based on this structure, the global histograms can be computed in 

^Klog E log time. Again, when N^ 二 N] 二…二 Nm, the 

complexity becomes 0{MN log(MN) log B). 

4.2 Piecewise Linear Global Histograms 

In Chapter 3，we have introduced the piecewise linear histogram and demon-

strated its superiority over other existing histogram techniques. In this chap-

ter, we take a global view of the multiple attributes in a database, and extend 

it to piecewise linear global histogram and study its performance. 

Recall that when constructing piecewise linear histograms, we first identify 

those ranges of attribute values that have zero frequency, and store their cor-

responding boundaries, and then for the remaining attribute values, we choose 

to set the boundaries at where the slopes change most abruptly. The rationale 

behind this partitioning rule is that we wish to avoid large variation of frequen-

cies (to be more exactly, the slopes) in a bucket so that we can approximate 

the frequencies in a bucket more precisely using linear regression. This idea is 

also applicable when we build global histograms. But since there are multiple 

attributes in global histogram, we have to modify the algorithm to make it 

fit in the next context. The most important difference is that, when building 

global histograms, we should consider the slopes in all attributes collectively 

rather than consider each individual attribute independently. 

Suppose we need to build the global histogram on M attributes. The first 

step is to deal with 0-buckets (if any). We find those ranges on the M value 

sets that have zero frequencies and store the boundaries of the p ranges that 

have the largest span. Then, for the remaining values and their corresponding 

frequencies, partitioning is done based on the slopes. In this step, we first 

calculate the slopes according to it definition as described in Chapter 3. Then, 
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we can find out those positions where the slopes change most abruptly, and put 

boundaries at those positions. After obtaining the boundaries of buckets, we 

can proceed to approximate the frequencies inside each bucket (except those 

0-buckets) using linear regression and store the resulting coefficients. The set 

of boundaries and regression coefficients constitute the piecewise linear global 

histogram. 

The process of constructing piecewise linear global histogram is more for-

mally described in Algorithm 4.3. Here we use Vi to denote the value set of 

the z-th attribute (1 < i < M) , use fij to denote the frequency of the j-th. 

value in attribute i. bi,j and eij represent the starting and ending points of 

the j-th. bucket of attribute i respectively. 

Algorithm 4.3 Algorithm for Computing Piecewise Linear Global Histograms 
for z = 1 to M do 

Compute r^ = {[bi,j,eij]\bij,eij G Vi, and fi,k = 0(6,j <k< ； 

Calculate Si = {sij\sij 二 Cij - bi,j, [bij — eiJ] e FJ; 
end for 
From all Sij in all <Si(l < i < M) , select the largest p% span 5, and store 
Ho, the bij, eij pairs corresponding to these spans; 
for i = 1 to M do 

Calculate the change of slopes Ci : c‘ ’j(l < j < M — 2); 
end for 
From all c G Ci{l < i < M) , store i/5, select the set of largest 1 — p% cs, 
and store Hq, the values corresponding to the selected cs; 
H = HoUff6； 

Sort elements in H in ascending order; they constitute the set of bucket 
boundaries; 
for i 二 1 to M do 

For non-zero buckets, use linear regression to obtain two coefficients and 
store them together with the corresponding boundaries; for 0-buckets, just 
store the boundaries; 

end for 

From Algorithm 4.3, we can see that the piecewise linear global histogram 

requires 二 1 NiB) time to construct. When N^^ = N2 =…二 Nm = 

N, the complexity becomes 0�BMN), the same as that of Wavelet-based 
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Histogram I. 

4.3 A-Optimal Global Histograms 

In [51], the global optimal histograms are defined as the set of histograms on 

multiple attributes that can minimize the weighted sum of normalized standard 

deviation of each attribute, i.e., Pi . ^r^^ where pi is the probability of 

the 2-th attribute being queried, a n d � “ i s defined as 

^avg _ ySSEj 
^ number of buckets for histogram i 

The above definition of global optimal histograms is based on the normal-

ized standard deviation. Yet as mentioned in Chapter 3, we often use average 

absolute error as an error metric, which is also the case in [51]. When using 

average absolute error, we would like to directly minimize this error metric 

instead of using the above definition using the standard deviation. Here we 

propose a new set of A-optimal Global Histograms that are aimed at minimiz-

ing the average absolute errors for a given number of buckets. 

Here we follow the same definition of Sum Absolute Error as that in Chapter 

3. That is, for any interval [z, j],z < j , 

SAE{z, j ) = j 2 { h - E S T { z , j ) r (4.2) 
k—i 

where EST{i,j) can be either AVG{i,j) or MEDIAN{iJ). 

Let the histogram for attribute Xi be hi, and its number of buckets be bi. 

We now define the set of A-Optimal global histograms as follows: 

Definition 4.2 A set of histograms H = {h^\l < i < M} is called the set 

of A-optimal Global Histograms, {{hi, bi)\l < i < M } , if Y^f^i ^ B and 

Pi • SAEi)^ where SAEi is Sum Absolute Error in histogram hi, and 

Pi is the probability of attribute Xi being queried. 
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We denote SAEi{j, Ni) as Sum Absolute Error of histogram hi with the 

number of buckets j , and its data distribution has N] distinct values.To con-

struct A-Optimal global histograms, we first calculate S A E i ( b , N i � f o r all 

1 < b < B — M + 1,1 < i < M using the dynamic programming techniques 

developed in Chapter 3 for computing A-Optimal Histograms. We store them 

in an array. Next, based on the observation that 

k k-l 
m i n ( ^ SAEi{b,, N,)) = min(mii i (E SA驰,N,)) + SAEk(bk, A ^ ) , (4.3) 

i=l i=l 

where bk ranges from 1 to M + 1, and Y^ill bi ranges from {B — M-{-k—l) 

to {k — 1) correspondingly, the solution for AEi{bi, Ni)) can be 

reduced to the case of A: — 1 by examining all possible number of buckets for 

the k-th histogram. Then we can compute SAEi{hi, Ni)) (1 < i < 

M,k < ^JLj bi < B — M + k) by using dynamic programming techniques. 

The algorithm is shown in Algorithm 4.4. 

Algorithm 4.4 Algorithm for Computing A-optimal Global Histograms 
for 2 = 1 to M do 

for 6 = 1 to B do 
Calculate cr[i][b 

end for 
end for 
for i — 1 to B do 

MinSumError[l] [z] = cr[l][z 
end for 
for j = 2 to M do 

for k = j to B — M + j do 
MinSiimErrorll^j] = min{ Mi n S u m Err or [j — l][p] + cr[j][q]) 
(where j — I < p,q < k — I and p-\-q = j + k — 2) 

end for 
end for 
MinSum Error* = M in Sinn Error [M] [B] is the result. 

Ill the above algorithm, we have focused on the computation of A4 in Sum Error. 

The corresponding bucket boundaries and number of buckets can be obtained 
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by maintaining additional data structures that keep track of the bucket bound-

aries and number of buckets in the partial solutions evaluated during the run 

of the algorithm. 

4.3.1 Experiments 

We conducted two sets of experiments to evaluate the performance of the 

various global histograms proposed in this Chapter. In the first set, we com-

pare each type of global histogram with their corresponding single attribute 

versions. In the second set, we compare the performance of these global his-

tograms against each other. 

The test data sets are the same as the Group I data used in [51]. The 

test group consists of five data sets, all of which are synthesized Zipf data 

with z = 0,z = 0.01,之=0.1, 二 1.0, and z = 2 individually. Each data set 

was generated with the size of 500,000 and N = 500. The frequencies of the 

synthesized Zipf data are mapped to the values randomly. We use two query 

sets A and C as described in the previous chapter for comparing the accuracy. 

Figures 4.2 - 4.5 show the accuracy comparison of the global histograms 

versus their single attribute counterparts. When computing single attribute 

histograms, we simply allocate the same number of buckets to each histogram, 

thus do not take the different data skew of different attributes into considera-

tion. For A-Optimal histograms, since the results for all variants are similar, 

we only present those for A-Optimal(median-cf) histograms here. 

Clearly, by adaptively allocating storage space to different histograms, the 

global histograms achieve better accuracy than single attribute histograms. 

The improvement is significant, and thus verifies the effectiveness of our pro-

posed methods. 
We have also compared the accuracy of different types of global histograms. 
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Figure 4.1 Construction Time of Various Histograms 
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The results are shown in Figure 4.6. We can see that for equality queries, A-

Optimal histograms and Global Optimal Histograms are the best. For range 

queries, A-Optimal histograms, Global Optimal Histograms, and piecewise 

linear global histograms all perform well. 

Besides accuracy, the efficiency of various histogram techniques is also a 

major concern. We recorded the CPU time for the construction of the five types 

of histograms and the results are shown in Figure 4.2. As indicated by the fig-

ure, the piecewise linear global histogram and wavelet-based global histogram 

I belong to the most efficient histogram techniques, with their construction 

time almost negligible compared with that of other three techniques. Though 

global optimal histogram is one of most accurate histograms, its construction 

cost is the highest among the five types of histograms we compared. This sug-

gests that we should choose right techniques for different kinds of applications. 

For applications where accuracy is the most important concern, global optimal 

histograms or a-optimal global histograms should be chosen, while for most 

applications where efficiency is primary concern, the piecewise linear global 

histograms and wavelet-based histograms are better choices instead. 
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Figure 4.2 Piecewise Linear Global Histograms v.s. Piecewise Linear His-
tograms 
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Figure 4-3 Wavelet-based Global Histograms I v.s. Wavelet Histograms 
(Haar) 
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Figure 4.4 Wavelet-based Global Histograms II v.s. Wavelet Histograms 
(Haar) 
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Figure 4.5 A-Optimal Global Histograms v.s. A-Optimal Histograms 
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Figure 4.6 Accuracy of Various Global Histograms 

^ 
45001 B 1 1 1 1 I I I .1 12| 1 1 1 1 ~ I I I .1 

\ -H(f- Piecewise Unear Global Histograms - * - Piecewise Unear Global Histograms 
\ - a - Wavelet-based Global Histograms I Wavelet-based Global Histograms 1 

^ ^ \ + Wavelet-based Global Histograms II . Wavelet-based Global Histograms II 
\ - A - A-Optimal Global Histograms R A-Optimal Global Histograms 

k \ - O - Global Optimal Histograms | 10 • \ - Q - Global Optimal Histograms |-
3500 - \ \ \ 

r . \ \ - 广 \ -
1 2 5 0 0 - \ \ - I \ 

20 30 40 50 60 70 80 90 100 %0 30 40 50 60 70 80 90 100 
Number of Buckets Number of Buckets 

(a) Query Set A - Average Absolute Error (b) Query Set C - Average Absolute Er-
ror 

1.4| 1 1 1 1 I I I - ] 0.91 1 1 1 1 I I I =r | ‘ 
-H*- Piecewise Unear Global Histograms • — P i e c e w i s e Unear Global Histograms 
- B - Wavelet-based Global Histograms 1 \ - s - Wavelet-based Global Histograms I 

Wavelet-based Global Histograms It q s - \ Wavelet-based Global Histograms II • 
- A - A-Optimal Global Histograms \ A-Optimal Global Histograms 

n ~0~ Global Optimal Histograms | \ - O - Global Optimal Histograms | 

0_2- A — “ “ \ \ 
A . 0.1 - \ \ • 

。 . . ^ ： ： “ . 
*20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100 

Number of Buckets Number of Buckets 

(c) Query Set A - Average Relative Error (d) Query Set C - Average Relative Error 



Chapter 5 

Dynamic Maintenance 

A major advantage of histogram techniques over other selectivity estimation 

methods is that histograms are precomputed and therefore do not incur sig-

nificant costs during their usage for estimation. However, if the underlying 

database is updated after the histogram computation, those precomputed his-

tograms may become out-of-date and do not reflect the current data distribu-

tion. This will bring additional errors if we use these outdated histograms to 

make the selectivity estimation, and the errors can be large if the data is signif-

icantly changed. Thus, it is necessary for the DBMS to update the histograms 

after the data has been changed. 

Ideally, the update should be done for each change in the data. But in 

some circumstances, it is impractical to recompute the histogram after each 

and every update to the relation, either because the update is too frequent, 

or because the histogram in use is too costly to compute. In most commercial 

database systems, this issue has been handled by compromising the frequency 

of histogram update. Nonetheless, for each update, it is still needed to recom-

pute and rebuild a new histogram from scratch [70] based upon the new data 

distribution. Clearly this approach is still costly, and the histogram update 

cannot be done frequently. Consequently, it is hard to keep the histograms up 

to date. So, it is much desirable if we can come up with some efficient methods 

that can incrementally maintain the histograms as the database is modified. 

81 
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This issue has received much attention recently [32, 1, 62, 24]. Gibbons et al 

32] presents sampling-based approaches for incremental maintenance of equi-

depth and compressed histograms. An important aspect employed by their 

approach is a backing sample, an up-to-date random sample of the tuples cur-

rently in a relation. Since this backing sample is typically stored on disk, its 

maintenance involves disk access, and thus undermines the overall efficiency 

of the histogram maintenance. [1] proposes a novel approach of building self-

tuning histograms. These histograms differs from previous approaches in that 

they infer data distributions not by examining data or a sample thereof, but 

by using feedback from the query execution engine about the actual selectiv-

ity of range selection operators to progressively refine the histogram. Thus, 

the cost of building and maintaining the histograms is independent of the 

data size and generally inexpensive. In [1], the discussion was focused on 

MaxDiff histograms for one dimension and MHIST histograms for multiple di-

mensions. Their approach cannot be directly adapted to our piecewise linear 

histograms because building these histogram involves a non-trivial mathemat-

ical procedure. In [70], an efficient method for the dynamic maintenance of 

wavelet-based histograms is introduced. This method is based on probabilistic 

counting, a powerful tool that will also be used in this thesis. 

In Chapter 3, we have introduced a new type of histogram called piece-

wise linear histogram, which has shown to perform better than other leading 

histograms such as the wavelet-based histograms. While piecewise linear his-

tograms have very little CPU and storage cost at query optimization time, 

rebuilding a histogram when the underlying data are changed is usually ex-

pensive since it involves rescanning the data and perform the partition and 

regression steps from scratch. Thus, it is important for us to derive an efficient 

method for the incremental maintenance of the piecewise linear histograms 

to compete with other leading histogram techniques. In this chapter, we will 

address this issue and propose a method that can meet this goal. 
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5.1 Problem Definition 

Let F t � b e the initial data distribution (frequency set) at time to, and Hq 

is a piecewise linear histogram built on Ft� . Suppose one or more changes 

occur to the data distribution from time to to ti, and the resulting new data 

distribution is Ft .̂ A new piecewise linear histogram Hi can be built on this 

new data distribution. Our dynamic maintenance problem can be formulated 

as: at any time ti, how can we efficiently maintain a histogram Hi that is a 

good approximation of i^i? 

We use the following denotations in the subsequent sections. A piecewise 

linear histogram H with B buckets consists of two parts, a set of B—1 boundary 

values bi{l < i < B — 1) that separate the value set into B buckets < 

i 1 B) = [6i_i + l,bi\ (Here we assume bo and bs denote the maximum and 

minimum value in the value set respectively), and a set of bucket coefficients 

Pi[l < i < B), with each of which corresponding to a bucket. Pi has two 

elements, ai and c“ recording the slope and the intercept of the regression line 

respectively. As for the change of the data distribution from time to to 艺i, we 

use Ai to the denote the frequency change f-^ — of value Vi. A sequence of 

changes occurring between to and ti is represented by a list: 

A = {Ai,... (5.1) 

Three types of change may occur to the data distribution: insertion, deletion, 

and update. Inserting a value Vi can be regarded as increasing fi by one. 

Similarly, deleting a value Vi can be regarded as decreasing fi by one. And any 

update can be regarded as a deletion followed by an insertion. For simplicity, 

in this thesis we will focus on individual changes of +1 and —1. 

Recall that in piecewise linear histograms, the bucket coefficients are ob-

tained by applying linear regression on the frequencies in the bucket. So, when 

a value Vi in a bucket 5 is inserted or deleted, the coefficients of the bucket 5 are 

affected. On the other hand, the value insertion or deletion also changes the 
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slopes in the frequencies set (as defined in Chapter 3). Since the boundaries 

in a piecewise linear histogram is supposed to be placed at where the slope 

changes are the largest, the boundaries have to be changed when there ap-

pear new slope changes that are larger than the original selected ones. Hence, 

our method for dynamic maintenance of piecewise linear histograms consists 

of two parts: (1) refining individual bucket coefficients and (2) restructuring 

the histogram, i.e., moving the bucket boundaries. As will be shown below, 

the refinement process can be done with very little CPU time, but the re-

structuring of histogram involves a more expensive procedure. Thus, these 

two parts are carried out with different frequencies. Histograms can be refined 

for each change in the data distribution, while the restructuring will be done 

periodically. We describe each of the steps in the following sections. 

5.2 Refining Bucket Coefficients 

Consider the case where a value Vi is inserted or deleted. Because there is 

no correlation between the coefficients of different buckets, the only part in 

the histogram that is affected by change is the coefficients of the bucket that 

contains Vi. We denote this bucket by home(i). We need to find some efficient 

way to update the coefficients for this bucket. For this purpose, we have derived 

the following theorem. (Without loss of generality, here we assume that the 

value set consists of consecutive integer values.) 

Theorem 5.1 From time to to /i , if the frequency of value v̂  is changed from 

/ / � t o (i.e., A. 二 — /,“)，then for j = home(i), we have 
•乙’ • — V 

/\r —广—广化—A . 5 

jCj — Cj s - V iv, — vV 

A a , = ( � — ( � = A , - r A c , 

where f’ = ’础 + i t ] i � ) / ( b j — bj — i) is the mean of the values in the bucket 
Sj. 
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Proo f At time t, the coefficients of bucket Sj obtained by linear least squares 

regression are 

C- = ^ / rr^ � � . … 

a] = r — c\v. (5.4) 

Since f^ = Jf for bj—i + 1 < Vk < bj, k ：/： i, we have 

A c , = � - � 

— - 叫 广 - 尸 。 ） — E 外 啡 ” i + i ’ M ( 外 — 叫 产 - 产 ） 

= A ” 广 5 

— ‘ E 外 印 , _ i + l , 6 j ] ( ” 广 即 

and 

Aa, = a � — � = ( 产 - 严 ) — - cf)v 

1 A 一 A 

= 7 — — r A i — vAcj 
bj — bj-i 

I 
Based on the above theorem, we can update the coefficient Pj by 

a / = a'f + A a „ (5.5) 

4 = � + Ac, (5.6) 

To calculate Acj, we need to know v and Ylvke[bj-i+i,bj]('̂ k — Since 

here values in Sj are consecutive integers, we have 

^ = … + l + \ and (5.7) 
Ld 
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E ( ” 广 句 2 = E v! - (b广 b� — i y 

= + 鹏 + 1) - (^-1 + + 2)(26,_i + 3)] 

—[bj -

(5.8) 

This means the new coefficient values can be calculated in constant time with 

very little cost. In cases that the values in Sj are not consecutive integers, 

the V and M (外 — 印 can be computed directly each time they are 

used. Alternatively, we can compute them once and store the result. Then 

when they are used in computation of Aa and Ac, we can simply take a table 

lookup to retrieve their values. Since this process only involves the values in 

one bucket, the new coefficient values can still be obtained with low cost. 

5.3 Restructuring 

Refining the bucket coefficients is not enough to keep the histograms up to 

date. In a piecewise linear histogram, boundaries are placed at where the 

slopes change most abruptly (We call it significant changes below, and use r?,- to 

denote the slope change at boundary 6 (̂1 < i < B — 1)). When the underlying 

data distribution is changed (e.g., after an insertion), some slope changes that 

are not significant in the original setting may now become significant. The 

histogram has to be restructured to reflect this change. 

A naive way to solve the problem is to recompute the histogram from 

scratch based on the new data distribution. This approach is not feasible since 

it involves a complete scanning of the data (or a sample) and thus invokes too 

much overhead, even though they maintain the quality of the histogram. 

Another approach is to trade accuracy for efficiency. We could build the 

histogram Hq at time to and thereafter just fix the boundaries and keep the 

bucket coefficients up to date using Equation (5.2). This approach would work 
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fine if the characteristics of the underlying data distribution do not change or 

just have minor change. But the problem is that there is no guarantee that 

the slope changes at the boundaries are still the most significant ones after 

the underlying data distribution has changed even modestly. As we shall see 

in the experiments, histograms maintained using this simple approach often 

incur very big errors in estimations. 

In the following paragraphs, we will propose a new method that can main-

tain the histograms efficiently without sacrificing much accuracy. This method 

is based on probabilistic counting [28], a technique that has been successfully 

applied to many database applications, including the dynamic maintenance of 

wavelet-based histograms [70]. Using this method, we expect the histograms 

to be adaptive to changes in the data distributions, and at the same time, 

roughly as accurate as a fixed histogram for the case in which the update data 

follow the same or similar data distributions as the original data. 

We will focus on insertions as deletions are similar and update is one in-

sertion followed by a deletion. 

To determine when the bucket boundaries should be moved, new slope 

changes have to be compared with the slope changes at the original bound-

aries. So we must maintain a list of the B — 1 largest slope changes, R 二 

{Hji, . . . We can also store another auxiliary list R' of length B' that 

contains the B -th to (B + B' — Vjth largest slope changes. Any insertion, dele-

tion and update activity is logged into an activity log (7, which has a maximal 

size of Max-LogSize. 

Consider the insertion of a value Vi into the data. We first write an entry i 

into the log G. Then, besides updating the coefficients of bucket home{i)^ we 

need to update the slope changes that are affected by the insertion of Vi. We 

denote the positions of these affected slope changes by influence{i), which 

normally consists of three elements: i _ and i + 1. They are updated 
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according to the following rules: 

= -f 1, if e R U R ' 

ri = ri — 2, if n e R U B! (5.9) 

Ti+i = Ti+i - 1, if ri+i e RU R' 

This above rules are easy to verify according to the definition of slope change. 

For j G influence{i) with rj ^ RU R', however, things are much more com-

plicated, because we have no idea about their original values and thus cannot 

determine its new value. In this case, we defer their processing to a later stage. 

When the log is full, i.e., the number of entries in the log reaches MaooJLogSize, 

we start to process the entries in the log. For entries i, if there exists j G 

influence{i), but rj ^ RU R', we use a probabilistic counting technique: We 

flip a coin with probability pj of heads. If the coin flips a head, we set \rj 

to be Xj (a value to be determined later), and we replace the smallest r (in 

absolute value) in R' with rj. When all the entries are processed, we begin to 

adjust R and R', Whenever the magnitude of the largest element (in absolute 

value) exceeds R'-Threshold (to be determined later), we switch it with the 

smallest elements in R. By using the probabilistic counting technique, we can 

detect any "surprising" candidates for R that may later become significant 

even though they do not appear significant initially. 

For any changes in R and R', we move the boundaries accordingly, and 

perform linear regression to obtain the bucket coefficients for the newly formed 

buckets. 

After we are done with the entries in the log, we can start over to process 

any new updates and form new logs. 

We now study the various parameters used in the above method. Max—LogSize 

specifies how often we want to check into the situation where we need to do the 

restructuring when the data distribution changes. The smaller Max—LogSize 

is, the more often the restructuring will occur. Frequent checking is good 
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for accuracy, but it causes slow performance. In our experiments, we choose 

Max-LogSize to be 5% — 10% of the base data size. 

The parameter R' —Threshold specifies how aggressive we are in adjusting 

R over time. Denote the magnitude of the minimum element (in absolute 

value) by mm{R). It is reasonable to set R,-Threshold = mm{R). But if 

the magnitude of two elements are very close, it does not really matter which 

one is in R, because both would be (approximately) equally important. In 

our experiments, we set R'一Threshod = rji x min(/?), where rji is a constant 

(typically in the range [1.0, 2.0]). 

Now let us consider how we should set pj and Xj. Intuitively, we want 

1 /pj to correspond to the number of insertions needed at value Vi to bring the 

magnitude of rj from its initial value of zero (because the slope change along the 

regression line is always zero) to Xj, so we need to set Xj first. The parameter 

Xj is similar to R'-Threshold, and we can set the Xj — 7/2 x min(i?)，where 772 is 

a constant, typically in the range [0.2, 0.8]. Considering the different properties 

of the elements in influence(V), we have 1,̂ +1 = l/x, and pi = 2!x. The 

exact value of Vj depends on its position. When the coin flips a head for rj, 

the value should be set to a: if j = z — 1, and —x if j = i or j — i + 1. 

The algorithm is summarized in Algorithm 5.1. 

We have focused on insertions in the above presentation. Deletions can 

be handled in a similar fashion. The insertions and deletions can be stored in 

separate logs, or alternatively, stored in the same log, but processed separately. 

The only storage overhead of our method is the two slope changes list R 

and R'. The time overhead consists of two parts: the time for updating the 

bucket coefficients, and the time for restructuring the histogram. The cost of 

the first part is small and fixed, since we can compute the new coefficients 

in constant time. The second part takes longer time than the first part, but 

it is only invoked after a significant number of updates and can be tuned by 

the user. Moreover, by employing sampling techniques as used in [87], we can 
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Algorithm 5.1 Algorithm for Dynamic Maintenance of Piecewise Linear His-
tograms 

Compute piecewise linear histogram H on the base data distribution; 
Compose R by choosing the largest B — 1 slope changes; 
Compose R' by choosing the next B' largest slope changes; 
while insert value Vi into the relation do 

Write Vi to log G\ 
logsize — logsize + 1; 

home{%) = the bucket that contains vi] 
Update the coefficients of bucket home(i) according to 5.2; 
influence[i) = {i — 1, z, z + 1}； 

for each j G influence[i) do 
if Tj e RU R' then 

Update rj using (5.9); 
end if 

end for 
if logsize —= Max.Log Size then 

/ * Start to process the log G */ 
for k = 1 to logsize do 

i = kth entry in G; 
X = rj2 X min(i?); 
for each j G {influence{i) — {RU R')) do 

if j = i then 
p = 2/a;; 

else 
p = 1/x] 

end if 
e == a random number in (0,1); 
if e < p then 

if j = i — 1 then 
rj = X； 

else 
rj = —X； 

end if 
Replace mm{R') with x; 

end if 
end for 

end for 
while max(i^') > 772 x mm{R) do 

Swap the position of max(i?^) and min(i?); 
Obtain new bucket coefficients for the buckets affected by the swap-
ping； 

end while 
logsize = 0; 

end if 
end while 
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further speed up the linear regression in the structuring. 

5.4 Experiments 

We compare the following three methods for dynamic maintenance of piecewise 

linear histograms by experiments. 

• Exact Method: The histograms is recomputed from scratch for any up-

date of the data distribution. The histogram maintained using this 

method is exactly the same as the histogram built on the data distri-

bution at that time. Thus, we expect it to provide the best accuracy. 

However, it is also the most expensive method. 

• Static Method: The boundaries are fixed once the histogram is built. The 

only part changed when there are updates to the data distribution is the 

bucket coefficients. 

• Probabilistic Counting Method: This is the method we introduced in the 

previous section. 

The data we used in our experiments are similar to those used in [32] and 

70]. We model the original data and the update data using Zipf distributions 

with various z values. The frequency sets are mapped to the values using 

three different kinds of correlations: positive (the bigger the value, the higher 

the frequency), negative (the bigger the value, the lower the frequency), and 

random. A Zipf distribution with parameter z and correlation X is denoted 

by Zzpf{z,X). 

We now introduce the parameter settings we use in the experiments. The 

number of buckets, B is set to be 15. The size of the value set is 500. The 

parameter B' is important in that it specifies how much information we may 

have about the slope changes. Obviously, from an accuracy perspective, we 
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want B' to be as large as possible. But a larger B' will slow down the main-

tenance. Our experiments show that it is not necessary to have a large B丨 to 

achieve good accuracy. The accuracy remains similar for a wide range of B' 

values. In our experiments, we set B' = B12. 

The other two parameters, r/i and rj2, specify how aggressive the histogram 

restructuring would be. In our experiments, we find the accuracy is stable for 

various rji and r]2 values from the ranges of [1.0 — 2.0] and [0.2, 0.8] respectively. 

We use r]i = 1.5 and 772 = 0.5 in our experiments. 

The parameter Max-LogSize is set be 5% of the base data size. 

We tested the accuracy of various methods on a wide range of data dis-

tributions and update patterns using the query sets specified in Chapter 3. 

We find that for the cases where the base data and update data follows the 

same or very similar distributions, the set of largest slope changes does not 

change, or has some minor changes. Thus, the static method almost achieves 

the same accuracy as the exact method. Intuitively, our probabilistic counting 

method might performs worse, because it may unnecessarily restructuring the 

histogram due to the probabilistic nature of the method. But our experiments 

show that the probabilistic counting method can give comparable accuracy as 

the exact method. Tables 5.1 - 5.2 show the accuracy of various methods one 

typical case. The base data contain 10̂  tuples from the Zzp/(1.0, negative) 

distribution, and the update data come from the Zipf {1.2, negtive) data dis-

tribution. The errors are measured after 4 x 10̂  insertions. 

We find that our method performs very well for cases where the update data 

distribution is much different from the base data distribution. As a typical case, 

we perform 4 x 10̂  insertions that follow the Zipf {1.5, random) distribution to 

the base data of size 10 ,̂ which come from the Zipf {1.0^ negative) distribution. 

Figure 5.1 presents the accuracy of the various methods when the number of 

inserted tuples is 10^,2 x 10^,3 x 10 ,̂ and 4 x 10̂  respectively. Clearly, the 

probabilistic counting method performs much better than the static method, 
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Error Measure Probabilistic Counting Exact Static 
||e1i 0.132 0.129 0.129 

iieabs||i 34.28 33.14 33.14 
iie—ji? 57.45 56.35 56.35 

Table 5.1: Errors of Various Methods for Query Set A after 4 x 10® Insertions 

Error Measure Probabilistic Counting Exact S t a t i c [ 
.||e1i 0.00129 0.00121 0.00121 

iieabs||i 1267 1247 1247 
i ieHis 1492 1477 1477 

Table 5.2: Errors of Various Methods for Query Set C after 4 x 10^ Insertions 

and its accuracy is almost the same as that of exact method. 
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Figure 5.1 Accuracy of Various Methods for Dynamic Maintenance 
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Chapter 6 

Conclusions 

Selectivity estimation is an important part of query optimization. Recently, 

the accuracy requirements of these estimations have been growing because 

the complexity of the queries being posed (e.g., in decision support systems) 

are increasing, and new DBMS components are being devised (e.g., the query 

profiler). Yet, many commercial systems are still using highly inaccurate sta-

tistical techniques for the estimation purpose. 

In this thesis, we have focused on histogram techniques for selectivity es-

timation. We reviewed previous work in the field of query optimization (his-

togram techniques in particular), and identified the pros and cons of various 

methods. From the efficiency/accuracy perspective, existing histogram tech-

niques can be roughly classfied into three categories. The histogram meth-

ods in first category are heuristic-based, including the equi-depth histogram, 

equi-width histogram, MaxDifF histogram, etc. These methods are the most 

efficient ones. But their accuracy is not always good. Histograms in the sec-

ond category are optimality-oriented. That is, they are aimed at minimizing 

some pre-specified error measures. The V-Optimal histogram is a typical ex-

ample of the methods in this category. The optimality-oriented histograms 

are costly to compute, but their accuracy is generally better than that of 

other histogram techniques. The last category consists of histogram based on 

transformations. The recently proposed wavelet-based histogram belongs to 
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this category. Transform-based histograms can achieve better accuracy than 

heuristic-baesd histograms, while still enjoy a low computational cost. 

Based on those observations, we proposed two new types of histograms: 

piecewise linear histogram and A-Optimal histogram. Piecewise linear his-

togram is a hybrid of the heuristic-based and transform-based histogram tech-

niques, in that it uses a heuristic to obtaining bucket boundaries, and uses 

linear regression to transform the data in a bucket into two coeffients. We 

have shown that the piecewise linear histogram achieves better accuracy than 

exisiting histogram techniques, and at the same time, enjoys a low time com-

plexity. A-Optimal belongs to the category of optimality-oriented histograms. 

It is aimed at minimizing the average absolute error of the approximiation of 

the underlying data distribution. Three variants of the A-Optimal histogram 

are proposed, for each of which we have derived the construction algorithm. 

A-Optimal histograms are good alternatives to the previously proposed V-

Optimal histograms. 

We have also considered the allocation of storage space among individual 

histograms in a database. By assigning more buckets to the attributes with 

data distributions of higher skewness, the overall selectivity estimation error 

is reduced. We have proposed the global version of the wavelet-based his-

togram, piecewise linear histogram, and A-Optimal histogram and compared 

their performance. 

The dynamic maintenance of the histograms is another issue we are con-

cerned. Since the data in a database are changing over time, the efficient 

maintenance is a must for histogram techniques. In chapter 5, we derived an 

efficient method for the dynamic maintenance of piecewise linear histograms 

based on probabilistic counting techniques, and compared its performance with 

other alternative methods. 

For future work, we will continue to investigate the possible improvements 

of our proposed piecewise linear histograms. We believe that the piecewise 
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linear histograms should form a class of histograms. Modification of the par-

titioning heuristic and the curve-fitting method will result in new types of 

histograms. We may study the effects of these variations. 

An important issue we have not addressed in this thesis is the multi-

dimensional histogram techniques. We will look into how to extend the piece-

wise linear histograms to the multi-dimensional case. And also, we will study 

the problems involved in building multi-dimensional histograms from a higher 

level, regardless of the concrete histogram techniques. An important prob-

lem that has not been solved by existing methods is that to build a complete 

set of multi-dimensional histograms for a given relation, all combinations of 

the attributes have to be considered. The complexity of this process is pro-

hibitively high. We will study the possible pruing methods that can speed up 

this process. 
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