5 research outputs found

    Randomness-Efficient Curve Samplers

    Get PDF
    Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions. The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(logN + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TSU06] they obtained curve samplers with near-optimal randomness complexity. We present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor), sampling curves of degree (m log_q (1/δ))^(O(1)) in F^m_q. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes

    Better lossless condensers through derandomized curve samplers

    Get PDF
    Lossless condensers are unbalanced expander graphs, with expansion close to optimal. Equivalently, they may be viewed as functions that use a short random seed to map a source on n bits to a source on many fewer bits while preserving all of the min-entropy. It is known how to build lossless condensers when the graphs are slightly unbalanced in the work of M. Capalbo et al. (2002). The highly unbalanced case is also important but the only known construction does not condense the source well. We give explicit constructions of lossless condensers with condensing close to optimal, and using near-optimal seed length. Our main technical contribution is a randomness-efficient method for sampling FD (where F is a field) with low-degree curves. This problem was addressed before in the works of E. Ben-Sasson et al. (2003) and D. Moshkovitz and R. Raz (2006) but the solutions apply only to degree one curves, i.e., lines. Our technique is new and elegant. We use sub-sampling and obtain our curve samplers by composing a sequence of low-degree manifolds, starting with high-dimension, low-degree manifolds and proceeding through lower and lower dimension manifolds with (moderately) growing degrees, until we finish with dimension-one, low-degree manifolds, i.e., curves. The technique may be of independent interest

    Finding heavy hitters from lossy or noisy data

    Get PDF
    Abstract. Motivated by Dvir et al. and Wigderson and Yehudayoff [3

    Randomness-Efficient Curve Samplers

    No full text
    Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions. The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(logN + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TSU06] they obtained curve samplers with near-optimal randomness complexity. We present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor), sampling curves of degree (m log_q (1/δ))^(O(1)) in F^m_q. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes

    Randomness-Efficient Curve Sampling

    Get PDF
    Curve samplers are sampling algorithms that proceed by viewing the domain as a vector space over a finite field, and randomly picking a low-degree curve in it as the sample. Curve samplers exhibit a nice property besides the sampling property: the restriction of low-degree polynomials over the domain to the sampled curve is still low-degree. This property is often used in combination with the sampling property and has found many applications, including PCP constructions, local decoding of codes, and algebraic PRG constructions. The randomness complexity of curve samplers is a crucial parameter for its applications. It is known that (non-explicit) curve samplers using O(log N + log(1/δ)) random bits exist, where N is the domain size and δ is the confidence error. The question of explicitly constructing randomness-efficient curve samplers was first raised in [TU06] where they obtained curve samplers with near-optimal randomness complexity. In this thesis, we present an explicit construction of low-degree curve samplers with optimal randomness complexity (up to a constant factor) that sample curves of degree (m logq(1/δ))O(1) in Fqm. Our construction is a delicate combination of several components, including extractor machinery, limited independence, iterated sampling, and list-recoverable codes.</p
    corecore