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Abstract. Motivated by Dvir et al. and Wigderson and Yehudayoff
[3,10], we examine the question of discovering the set of heavy hitters
of a distribution on strings (i.e., the set of strings with a certain mini-
mum probability) from lossy or noisy samples. While the previous work
concentrated on finding both the set of most probable elements and their
probabilities, we consider enumeration, the problem of just finding a list
that includes all the most probable elements without associated prob-
abilities. Unlike Wigderson and Yehudayoff [10], we do not assume the
underlying distribution has small support size, and our time bounds are
independent of the support size. For the enumeration problem, we give
a polynomial time algorithm for the lossy sample model for any con-
stant erasure probability μ < 1, and a quasi-polynomial algorithm for
the noisy sample model for any noise probability ν < 1/2 of flipping
bits. We extend the lower bound for the number of samples required for
the reconstruction problem from [3] to the enumeration problem to show
that when μ = 1− o(1), no polynomial time algorithm exists.

Keywords: Population Recovery, Enumeration of Heavy Hitters, Learn-
ing Discrete Distributions.

1 Introduction

Say that you are an investigator investigating DNA evidence at a crime scene.
You can collect and analyze random DNA strands available at the scene, and you
want to find DNA from each person involved in the crime, whether perpetrator or
victim. There are several complications that make your task more difficult. First,
it is not possible to exhaustively search through the huge number of microscopic
strands of DNA at the scene; the best you can do is randomly pick strands
and sequence them. Secondly, much of the DNA might have nothing to do with
the crime. There might be small amounts of trace DNA from a huge number
of people who passed by the scene at some time before the crime took place,
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and there might be contamination later. Thirdly, even the DNA from the people
involved will be only partially recoverable, with either missing pieces or random
noise.

Ideally, a complete crime scene analysis would give not just which DNA se-
quences were found, but their relative proportions. However, it would also be
extremely useful to know the set of sequences present. You couldn’t hope to get
a complete list of trace sequences without sequencing every single strand. But
you would want to filter out trace elements anyway, to concentrate on those from
likely suspects.

This example illustrates the general issue of trying to analyze a distribution
from lossy or noisy samples. Such problems are central to statistics, and arise in a
variety of scientific circumstances. In theoretical computer science, Kearns et al.
[6] introduced the general question of when a distribution can be identified from
samples, and gave the first algorithms for formulations of the problem above.
After that, attention was mainly focused on the continuous version of learning
mixtures of Gaussians, which had been introduced by the statistician Pearson
in the nineteenth century and was already a subject of great interest in AI and
statistics. This problem spurred some highly interesting and deep algorithmic
work (for example, [2,9,8,1] ).

The equally fascinating case of lossy or noisy discrete distributions, e.g., lossy
or noisy distributions on strings, only started getting attention again relatively
recently. In particular, Dvir et al. [3] used an algorithm to infer a distribution on
strings from lossy samples as a sub procedure in a learning algorithm for DNFs
in the restriction model. Their goal was to learn the underlying distribution by
giving an explicit description of a distribution which is close to the distribu-
tion that the samples were drawn from. For this reason, the problem as they
formalized it assumed that the distribution had small support, with at most k
non-zero probability elements, for a known parameter k which could affect the
running time of the algorithm. However, none of the techniques they used relied
on this assumption. On the other hand, the quasi-polynomial recovery algorithm
of Wigderson and Yehudayoff [10] from noisy samples does rely on the fact that
the support size is small.

In this work, we introduce a goal that is less ambitious but potentially more
robust. There are many situations, like the crime scene investigation mentioned
above, when it is desirable to identify a set containing all the probable elements,
but it is not necessary to provide a complete description of the distribution. For
example, perhaps one wants to identify gene patterns that are relatively common
among the DNA of drug-resistant bacteria, texts that are most duplicated on
web pages, or snippets of code that appear in many computer viruses. This
problem of identifying the “heavy hitters” of a distribution, has been extensively
studied in the context of streaming algorithms, see, for example, [5]. While just
identifying the heavy hitters requires less information than exactly characterizing
the distribution, for the same reason, it makes sense even when the distribution
has no nice description, e.g., when the distribution has a constant fraction of mass
divided among a very large, arbitrary set of strings. In this sense, algorithms for
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heavy hitters can be agnostic in the sense of agnostic learning.We wish to find the
best fit to a distribution with small support without relying on the assumption
that the distribution actually has small support.

We consider two basic error models. In the lossy sample model, each bit of
the sample drawn from the distribution is independently erased with probability
μ. For the lossy model, we provide a polynomial time algorithm that identifies
heavy hitters for any constant erasure probability μ < 1. The error models for
which our algorithm works are very general, and we do not require independence
of noise in a bit from either the noise in other bits or the input, as long as the
chance of erasure is never too large. For the case of independent erasures, the
estimation algorithms of [3,7] can also solve the enumeration problem. As a
converse, we also show that, if the erasure probability is 1− o(1), no polynomial
time algorithm exists for enumerating the heavy hitters.

In the noisy sample model, each bit of the sample drawn from the distribution
is independently flipped with probability ν. For the noisy sample model, we
give a quasi-polynomial time algorithm for identifying heavy hitters, for any
constant ν < 1/2. This algorithm is related but incomparable to the quasi-
polynomial distribution recovery algorithm of Dvir et al. [10]. On the one hand,
our algorithm is considerably faster (our exponent is doubly logarithmic rather
than logarithmic), and does not require the distribution to have small support.
On the other hand, they solve the harder problem of estimating the probabilities
for each heavy hitter.

1.1 Problem Definitions and Formal Statements of Our Results

The general issue of learning about distributions from noisy samples has many
variations and interesting formulations. Below, we will consider the ingredients
of such formulations and how they relate to each other.

Underlying distribution. In all versions, the samples come from some un-
derlying distribution D on {0, 1}n. D is unknown to the algorithm. The
algorithm can only access samples drawn from the D after errors are intro-
duced. As mentioned earlier, [3,10] make the assumption that D has support
size at most k, where k is given to the algorithm. Run times are given in
terms of k and n. We call this the small support size case. We mainly con-
sider the case when D is arbitrary. One could also consider other families of
distributions, e.g., easily sampled distributions, high-entropy distributions
or distributions that consist of independent pairs of strings x, y.

Error models. Like [3,10], we examine two basic types of error. The basic lossy
error model is as follows. After a string x = x1 . . . xn is drawn from D, the
observed sample has the form y1 . . . yn where for each i independently, we set
yi = ∗ with probability μ, and yi = xi otherwise, where ∗ is a new symbol.
The difficulty of the problem in the lossy model depends on the constant μ,
the larger the μ the more difficult the problem is. Some of our algorithms
and one of the algorithms in Dvir et al. [3] only work for μ smaller than a
specified constant.
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In the noisy model, the observed sample has the form y1 . . . yn where for
each i independently, we set yi = 1 − xi with probability ν, and yi = xi

otherwise.
We can also consider the problem for other error models. For example,

our lossy enumeration algorithm works equally well in a semi-random erasure
model, where, after erasures occur, an adversary is allowed to “un-erase” an
arbitrary set of positions. It is easy to see that estimation is not possible in
such a model.

Goal. We distinguish three goals for an algorithm. We are primarily concerned
with the enumeration problem. Here, the algorithm has as input a parameter
ε > 0, and needs to output a list L that contains all ε-heavy hitters of D,
i.e., all the strings z so that P[x = z] ≥ ε. L may contain some non-heavy
hitters, but we expect the algorithm to explicitly list the elements of L, so
an efficient algorithm cannot output a large list. There may in general be
1/ε heavy hitters, so an ideal algorithm runs in polynomial time in n and
1/ε.

In the estimation problem, the algorithm is given z and ε, and is required
to output an estimate of P[x = z] that is correct within additive error ε.
Even without errors, getting such an estimate would require 1/ε2 samples,
so again polynomial time in n and 1/ε is the best we could hope for.
Finally, in the recovery problem, we wish to find a list of elements that con-
tains all 2ε-heavy hitters and only contains ε-heavy hitters, and for each
element on our list we wish to have an estimate of its probability that is
within an additive error of at most ε. Note that, for distributions with sup-
port k, a recovery algorithm with ε = δ/k will provide an explicit description
of a distribution that is within δ of the actual one. This is the sense that a
recovery algorithm actually “recovers” the original distribution.

The recovery problem combines the enumeration and estimation problems, but
Dvir et al. [3] observe that any estimation algorithm can be used to solve the
recovery problem with only a factor n overhead, via a “branch-and-prune” ap-
proach. Thus, we only need to actually look at enumeration and estimation, and
estimation is the more difficult problem.

We devise or analyze algorithms for several of these problems. The results we
present in this extended abstract are:

1. For any constant μ < 1, we give a polynomial time (in n and 1/ε) algorithm
for enumeration of the ε-heavy hitters from lossy samples where μ is the bit
erasure probability. Here, the distribution is arbitrary and the time does not
depend on the support size of the distribution. The list size is a polynomial
in 1/ε that does not depend on n.

In fact, we need only the following property of the erasure model: There is
a parameter T so that, for any subset of T bit positions, the probability that
all bits are erased is o(ε2), whereas the probability that no bit is erased is at
least poly(ε). For independent erasures, both are true when T = C log 1/ε,
where C is a constant depending on μ. But this property will also be inherited
by any samples with fewer erasures, such as the semi-random distribution
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mentioned above. It will also hold for e.g., T -wise independent distributions
on erasures.

2. For samples with independent noise ν for any constant ν < 1/2, we give an
enumeration algorithm that takes polynomial time in n, and quasi-polynomial
time in 1/ε (more precisely, time poly(n)εO(log log ε)) time . Here, the distri-
bution is arbitrary and the time does not depend on the support size of the
distribution. The list size does not depend on n.

3. [3] give a super-polynomial lower bound for estimation from lossy samples even
for small support distributions when μ = 1 − o(1). We give a similar lower
bound for enumeration from lossy samples for small support distributions.

4. Dvir et al. [3] also observe that LP-duality can be used to characterize
the sample complexity of algorithms for estimation for arbitrary distribu-
tions, for any error model. We give a relaxation of this LP program that
shows a “Yao principle” for such estimation problems. We show that either
there is an algorithm for estimation using a certain number of samples or
a polynomially-related lower bound via two distributions whose noisy ver-
sions are indistinguishable. [3] also introduce the notion of “local inverse”
to a matrix. We show that the existence of any algorithm for estimation for
arbitrary distributions in an error model implies one via a local inverse to
the corresponding matrix.

In the full paper, we will include some additional results, not directly related to
enumeration:

1. We give a new algorithm for estimation from lossy samples that works in
time polynomial in n and exponential in 1/ε whenever μ ≤ 2/3.

2. Dvir et al. [3] have shown that their estimation algorithm for lossy samples
will work for arbitrary distributions for μ < 0.614.... We give a tighter anal-
ysis of their algorithm, showing that it works when μ < 1− 1/

√
2 = 0.69....

We present numerical computations that suggest that the real threshold for
this algorithm is μ = .75.

1.2 State-of-the-Art

For lossy samples with independent erasures, the current best algorithms for all
versions of the problem are due to Moitra and Saks [7], who, subsequently to
our work, solve the hardest version of this problem. They give a polynomial time
algorithm for estimation for arbitrary distributions, which implies similar algo-
rithms for enumeration and recovery. This result improves on the estimation and
recovery algorithms of [3], and is better than the algorithms from the first two
of our additional results to appear in the full paper. Our enumeration algorithm
is still useful if the erasures are not actually independent.

For noisy samples, for distributions of small support size, the current best al-
gorithm for estimation and recovery problems is the quasi-polynomial algorithm
of [10]. For any constant level of noise, this algorithm runs in time polynomial
in n and klog k when the support size is k. Our second result above is the only
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non-trivial algorithm known algorithm for enumeration when the distribution is
arbitrary, and is the fastest algorithm for enumeration even when the support
is small. For the estimation and recovery problems when the distributions are
arbitrary, no algorithms better than exponential time in n are known.

Combining the lower bound of [3] and the lower bound in result three above, all
versions of these problems require more than polynomially many samples when
the bit erasure probability μ = 1 − o(1) or when the bit flipping probability is
ν = 1/2− o(1).

2 Branch-and-Prune Algorithms

Our algorithms for enumeration follow the same “branch-and-prune” paradigm
as those of [3,10]. This paradigm can be viewed as a form of classical dynamic
programming [11], but in the context of probabilistic algorithms for enumeration,
the first example we know of is the Goldreich-Levin algorithm for list decoding
the Hadamard code. [4]. Dvir et al. [3] used a branch-and-prune method to
reduce the recovery problem to the estimation problem. In this section, we revisit
this connection and present a self-contained explanation. We also emphasize the
minimal set of conditions that a pruning algorithm needs to have to be useful
for enumeration.

Let D be the underlying distribution on n bit strings. For 1 ≤ m ≤ n, let Dm

be the distribution on the first m bits of a string drawn from D. In the context
of enumerating heavy hitters, we observe that the distribution on the first m bits
of the observed sample is equal to the distribution on lossy/noisy samples from
Dm with the same error parameter μ or ν. Also note that the m-bit prefix of any
heavy hitter for D is a heavy hitter forDm. Our goal is, form from 1 to n, to find
a set Sm of candidates that contains all the heavy hitters of Dm. Then the heavy
hitters for Dm+1 are contained in the set Tm+1 = {x0|x ∈ Sm} ∪ {x1|x ∈ Sm}.
This is the “branch” stage. However, to prevent this set of candidates from
growing exponentially, it is necessary to “prune” this set back to a smaller subset
Sm+1.

To be more precise, a pruning algorithm takes a set of m-bit strings T and
can request lossy or noisy samples from Dm, and produces a subset S ⊂ T . We
say the strings in T − S are pruned by the algorithm. Our pruning algorithms
have a parameter s and we need two properties to ensure their efficiency:

Correctness. With high probability (1− o(1/(ns))), no heavy hitter for Dm is
pruned.

Efficiency. If |T | > s, then with high probability S is a strict subset of T .

Note that an estimation algorithm can be used as a pruning algorithm: Estimate
the probability of each element of T to within an additive term of ε/3. Prune the
ones whose estimates are less than 2/3ε. Assuming the estimates are correct, all
ε heavy hitters are maintained. Furthermore, all but at most s = 3/ε elements
with probability at least ε/3 are pruned.

If both of these conditions hold, we can use the pruning algorithm for enumer-
ation. We maintain a set Sm that with high probability contains all heavy hitters
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for Dm. We construct Tm+1 as above, and prune it until the size remaining is
at most s. Since Tm+1 has at most 2s elements at the start, and each time we
prune we get a strict subset, pruning can happen at most s times for any m. The
probability of pruning a heavy hitter in any one run of the pruning algorithm is
o(1/(sn)) so with high probability, we never prune a heavy hitter. We will need
to use the pruning algorithm O(ns) times on a set of strings of size O(s).

If we have an estimation algorithm and an enumeration algorithm, we can
enumerate a list Sn of heavy hitters and estimate the probability of each of the
candidate heavy hitters in Sn to get a recovery algorithm.

Thus, it suffices to describe an algorithm for estimation or pruning in order
to specify an algorithm for recovery or enumeration, respectively.

3 Enumeration Algorithms

In this section, we give a polynomial time enumeration algorithm for lossy sam-
ples for any μ < 1, and a quasi-polynomial time algorithm for noisy samples for
any ν < 1/2. As described before, we only need to give a pruning algorithm in
each case.

3.1 Lossy Samples

We describe here the pruning algorithm for lossy samples. Let ε > 0. For some
polynomial s = nO(1)ε−O(1), we are given a set T of at most 2s strings that
includes all ε-heavy hitters, and want to find a subset S that contains all ε-
heavy hitters, but has at most s strings. When the parameter ε is clear from the
context, we will simply refer to an ε-heavy hitter as a heavy hitter.

The pruning algorithm works in two phases. In the Phase I, we will collect
a maximal set B ⊆ T of centers of small size such that the centers are at a
distance of at least d = C log 4

ε from each other, where C is a constant which
only depends on μ and will be determined later. Since B is maximal, each heavy
hitter is either in B or at most at a distance of d from an element in B. In the
second phase, for each center, we consider the elements of T close to it and prune
them.

Phase I: In Phase I, we start with a set B of centers (initially an empty set)
of size no more than 2/ε and greedily place non-pruned strings from T into B
as long as |B| ≤ 4/ε so that all centers in B are at least a distance d from each
other. If the size of B never equals 
4/ε�, we proceed to Phase II. If not, we
execute the following sub procedure to prune the non-heavy hitters from B so
that the size to B reduces to no more than 2/ε. We then repeat the greedy of
process of growing B.

Pruning B: At this point, we have |B| = 4/ε. Our goal is to cut the size of B
by half by pruning away sufficiently many non-heavy centers of B.

For v, w ∈ T define Δv,w = {i|vi �= wi}. In other words, Δv,w is the set of
positions where the strings v and w differ. For u, u′ ∈ B and for a lossy sample
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y, we say that y is (u, u′)-discriminatory if for at least one position in Δu,u′ , the
value is not erased in y. We say y is discriminatory if it is (u, u′)-discriminatory
for all u, u′ ∈ B. y is consistent with a string u ∈ T if it never disagrees with u
in a revealed bit. Note that y is always consistent with the original sample.

To prune non-heavy strings in B, we draw t = poly(1/ε) lossy samples. For
each center u, we compute the fraction pu of samples that are discriminatory
and consistent with u. Each sample can contribute to at most one center since
a discriminatory sample can be consistent with at most one center. If a discrim-
inatory sample y were to be consistent with centers u and u′, then there is a
position in Δu,u′ which is not erased in y where u and u′ agree, a contradiction.
Finally, if pu < ε/2, we prune u.

We will argue that at least 2/ε strings of B are pruned by the procedure
so we will end up with a B of size at most 2/ε. Let y be a lossy sample. y is
discriminatory with probability at least 7ε/8 since

P[y is not discriminatory] ≤
∑

u,u′∈B

P[y is not (u, u′)-discriminatory]

≤ (8/ε2)μd ≤ (8/ε2)μC log 4/ε

= (8/ε2)(ε3/64) for C = 3/ log 1
μ

≤ ε/8

Let u be a ε-heavy hitter. The probability that y is discriminatory and is consis-
tent with u is at least 7ε/8. Let pu be the fraction of discriminatory samples con-

sistent with u. P[pu ≤ ε/2] ≤ e−2(3ε/8)2t by Chernoff-Hoeffding bound since the
expected fraction is at least 7ε/8.P[∃ an ε-heavy center u such that pu ≤ ε/2] ≤
1
ε e

−2(3ε/8)2t by union bound since there are at most 1/ε such centers. Since
t = poly(1/ε), and since there are at most 2/ε centers that pass the threshold
of ε/2, with high probability, we will have pruned at least 2/ε centers while
retaining all heavy hitters in B.

Phase II: At this point, we have a set B of centers of size at most 4/ε such
that every non-pruned element of T is within a distance of d from some center.
Assign each non-pruned element of T to its closest center. For u ∈ B, let Bu

denote the set of elements of T assigned to u.
For each u, we prune Bu so that its size is bounded by a polynomial in 1/ε.

Since there are at most 4/ε centers, we will end up with the desired bound after
pruning. Fix u ∈ Bu. In the following, we outline how to prune Bu.

For v ∈ Bu, let Δv denote the set of positions where u and v differ. We say
that a sample y is revelatory for v if for no position i in Δv, yi = ∗.

We draw t lossy samples. For each v, we compute the fraction of samples that
are revelatory for and consistent with v. Each sample can contribute to at most
one element of Bu since a sample y can be revelatory for and consistent with
at most one v ∈ Bu. For every v, v′ ∈ Bu and v �= v′, there exists a position in
Δv ∪ Δv′ where one of v and v′ agrees with u and the other disagrees with u.
If y were to be revelatory for and consistent with both v and v′, then v and v′
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agree on every position in Δv ∪Δv′ , which is a contradiction. If the fraction for
v does not exceed the target εC

′+1/2, we prune it, where C′ is a constant that
depends only on μ.

Let v ∈ Bu and y be a sample. We will show that the probability a sample y
is revelatory for v is not small.

P[y is revelatory for v] ≥ (1− μ)|Δv | ≥ (1− μ)d = (1− μ)3 log 4
ε / log 1

μ

= (ε/4)C
′
for some constant C′ which only depends on μ

Let v ∈ Bu be an ε-heavy hitter. The probability that y is revelatory for and
consistent with v is at least (ε/4)C

′+1. Let pv be the fraction of samples that are

revelatory for and consistent with v. P[pv ≤ (ε/4)C
′+1/2] ≤ e−2((ε/4)C

′+1/2)2t

by Chernoff-Hoeffding bound since the expected fraction is at least (ε/4)C
′+1.

P[∃ an ε-heavy v such that pv ≤ (ε/4)C
′+1/2] ≤ 1

ε e
−2((ε/4)C

′+1/2)2t by union
bound since there are at most 1/ε such elements. Since t = poly(1/ε), with
high probability, at most 2/(ε/4)C

′+1 elements remain after pruning since there
are at most 2/(ε/4)C

′+1 elements v ∈ Bu such that pv ≥ (ε/4)C
′+1/2.

A General Lossy Error Model: Our algorithm for enumerating ε-heavy hit-
ters in the lossy error model and its analysis does not require that each bit
position is erased independently with probability μ. Our algorithm and its anal-
ysis can be easily extended to lossy error models that satisfy weaker conditions.

Let x be an arbitrary sample drawn according to the original distribution D.
Let y be a lossy model obtained from x according to a lossy error model. In the
following we provide a sufficient condition for lossy error models that guarantees
the correctness and performance of the above algorithm.

For all ε > 0, there exists a t such that for all sets S of t positions,

1. P[values in all positions of S are erased|x] ≤ ε3/64, and
2. P[none of the values in positions of S are erased|x] ≥ εO(1).

3.2 Noisy Samples

Here we give a quasi-polynomial enumeration algorithm for the noisy case for any
constant 0 ≤ ν < 1/2. As before, we present just the pruning algorithm. As in
the lossy case, it works in two phases. First, we locate a small number of centers
so that every heavy hitter is C log 1/ε distance from one of the centers, where
C is a constant that only depends on μ. This already gives a s = nO(log 1/ε))

algorithm, which works under a very general noise condition. However, we can
improve it to s = (1/ε)O(log(log(1/ε))) in the second stage that requires noise to be
exact and independent. In the second stage, for each center, we enumerate the
heavy hitters within d = O(log 1/ε) Hamming distance to the center. For each
fixed center, this is equivalent to enumerating all of the low Hamming weight
heavy hitters, which we can identify with the set of positions with value 1. To do
this, we give a potential function for a set of positions A, which upper bounds
the total probability of small Hamming weight strings that could contain A.
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In addition to A, we’ll maintain a set of positions R so that we only need to look
at heavy hitters whose 1’s are in R. We show that we can divide the extensions
A ∪ {i} into two categories, one that significantly lowers the potential function,
and another that significantly reduces the set R of positions we need to consider
in the future. If the potential function drops below ε, we can prune the search.
If R becomes very small, we can use a brute force search on small subsets of R.

The first phase works very similarly to the erasure case. We start with a set
B of centers (initially an empty set) of size no more than 2/ε and greedily place
non-pruned strings from T into B as long as |B| ≤ 4/ε so that all centers in B
are at least a distance d from each other. If the size of B never equals 
4/ε�, we
proceed to phase two. If not, we execute the following sub procedure to prune
the non-heavy hitters from B so that the size to B reduces to no more than 2/ε.
We then repeat the greedy of process of growing B.

For u, v ∈ B, let Δi,j be the set of positions where u and v differ. We say
that a noisy sample y favors u ∈ B if for every v ∈ B, y agrees with u in strictly
more than half the positions in Δu,v. Note that, if u is itself is the original
sample, each bit of the noisy sample y agrees with that of u with probability
1 − ν > 1/2. So the probability that at least half the positions of y in Δu,v

disagree with u, by Chernoff-Hoeffding bound, is at most e−Ω(d(1/2−ν)2) < ε/16
for some C = O(1/(1/2 − ν)2). So by a union bound over the 4/ε centers, if
the original sample is u, the conditional probability that y does not favor u is at
most 1/4. (This is the only place where we use the bound on the noise in the first
phase.) Thus, for any ε-heavy hitter u, y will favor u with probability at least
3ε/4. Also note that y can favor at most one center u, because otherwise y would
have to agree with both u and u in more than half the places where they differ.
So we estimate, using O(1/ε2 log s/ε) samples, the fraction of y’s that favor each
center, and prune all but the 2/ε centers where this estimate is greater than ε/2.

At this point, B, the set of centers, has size less than 4/ε, where every un-
pruned string of T is within Hamming distance d of one of the centers. Note that
there can be at most O(nd/ε) = nO(log 1/ε) candidates left at this point, so if
noise is not independent, we can simply use this phase as our pruning algorithm
to get a quasi-polynomial time enumeration algorithm.

In phase two, for each center, we enumerate those heavy hitters that are
within d to that center. The union of these lists will include all heavy hitters. By
taking the bit-wise parity of the noisy samples with the center in question, we
can without loss of generality assume that the center in question is the all-zero
string. Thus, the problem is now equivalent to enumerating all heavy hitters
of small Hamming weight, i.e., d or less. For a string x, let Δx be the set of
positions where x is 1.

Our procedure is recursive. At each point, we have two sets of positions
A, |A| ≤ d and R, and we are trying to enumerate all low Hamming weight
heavy hitters x with A ⊆ Δx ⊆ A ∪ R. Initially, A is empty, and R will
be all n positions (but we show that very quickly, R will decrease to just
poly(1/ε) positions.) We use a potential function 0 ≤ QA,R ≤ 1 that allows us to
prune some branches that cannot lead to actual heavy hitters. A large value of
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potential function is necessary but not sufficient for there to be such a heavy
hitter x with A ⊆ Δx ⊆ R ∪ A. QA,R has the following properties:

1. If |A| ≤ d, QA,R can be approximated to within any poly(ε) additive error
in time poly(1/ε).

2. If there is an ε-heavy hitter x of Hamming weight ≤ d with A ⊆ Δx ⊆ A∪R,
then QA,R ≥ ε/2.

3. If |R| > O(log2 1/ε) and QA,R ≥ ε/2, then the average value of QA∪{i},R for

i ∈ R−A is at most |R|−1/4QA,R.

Property 1 allows us to compute the potential function. Property 2 allows us to
prune any branch where the potential function is too small. Property 3 says that
the potential function decreases dramatically for most cases where we extend A.
We first define QA,R and prove it has the above properties, then describe the
enumeration algorithm in terms of the properties. In the following, we use x to
refer to the original sample and y to the corresponding noisy sample.

Let a and b be constants (depending on ν) so that aν + b(1 − ν) = 0, and
a(1− ν) + bν = 1 (equivalently a = (1− ν)/(1− 2ν) and b = −ν/(1− 2ν)). For
bit position i, let vi be a if yi = 1 and b if yi = 0. Then the equations above say
that the conditional expectation of vi is xi. (This method is borrowed from the
unbiased sampler for the estimation problem from [3]. Unfortunately, using that
estimator takes exponential time. We get around this by only using it within A,
which has size at most d = O(log 1/ε).) Let wR−A be the number of 1’s in y
within R−A. Let EA,R be an indicator variable for the event that wR−A ≤ ν|R−
A|+d−|A|. Let VA,R be the random variable (Πi∈Avi)EA,R . Note that, for a fixed
x, all of the factors in VA,R are independent, so E[VA,R|x] = P[EA,R|x]Πi∈Axi.
(This equation uses the fact that the noise in each bit is independent.) Let
QA,R be the expectation of VA,R. The above shows that although VA,R may
be a polynomially large positive or negative number, QA,R is always between 0
and 1.

The absolute values of the vi’s are bounded by a constant, and we multiply
at most d of them, so the maximum value of V is polynomial in 1/ε. Thus, we
can estimate QA,R up to any polynomial in ε additive error by averaging VA,R

for poly(1/ε) samples. This establishes the first property.
If x has Hamming weight at most d, and A ⊆ Δx ⊆ R ∪ A, then if the

expected number or fewer of bit flips occur in R − A, EA,R will be true. Thus,
for such an x the conditional probability of EA,R is at least 1/2. For such an
x, E[VA,R|x] ≥ 1/2Πi∈Axi = 1/2. Since the conditional expectation is never
negative, if there is any ε-heavy hitter as above, QA,R ≥ ε/2. This establishes
the second property.

To establish the third property, let h0 = (d − |A|)/(1 − 2ν) + 4
√|R| log 1/ε.

Fix any x, and let h be the Hamming weight of x in R − A. We claim that∑
j∈R−A E[VA∪{j},R|x] ≤ h0(E[VA,R|x] + ε2). Note that for any j ∈ R − A,

EA∪{j},R implies EA,R. Then
E[VA∪{j},R|x] = xj(Πi∈Axi)P[EA∪{j},R|x] ≤ xj(Πi∈Axi)P[EA,R|x] =

xjE[VA,R|x]. Summing all j ∈ |R−A|, we get an upper bound of hE[VA,R|x] for
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the conditional expectation of the sum. So the inequality holds conditioned on
any x with h ≤ h0.

For the other case, fix x with h = fh0, f ≥ 1. Then the expected Hamming
weight of y within R is ν|R|+h(1−2ν), and our cut-off for EA,R to occur is ν|R|+
(d−|A|). Applying Chernoff bounds, we can upper bound the probability of EA,R

given such an x as at most ε2f
2

. Then the overall expectation of hE[VA,R|x] ≤
Ah0ε

2f2

, which is decreasing with f . So setting f = 1 gives us an upper bound
which holds in general, of h0ε

2 which is the second error term.
By linearity of expectation, then

∑
j QA∪{j},R ≤ h0(QA,R + ε2) ≤ 2h0QA,R

since QA,R ≤ ε/2. So this is at most O(
√|R−A| log 1/ε)QA,R. Dividing by

|R−A| and using the assumptions |R| ≥ C′(log 1/ε)2 for some sufficiently large
constant C′ gives us that the average value of QA∪{j},R is at most QA,RR

−1/4.
This establishes the last property.

We use this potential function QA,R in our algorithm as follows: At any point,
we will be enumerating those heavy hitters x with Hamming weight at most d
so that A ⊂ Δx ⊂ R for some sets A, |A| ≤ d and R.

If R < C′ log2 1/ε, we just enumerate all d-tuples by brute force. If QA,R <
ε/2, we can just terminate and return the empty set.

Otherwise, we compute QA∪{j},R for each j ∈ R−A. Divide those j into the

“exceptional” ones with QA∪{i},R ≥ |R|−1/8QA,R and the remaining “typical”

ones. By the third property and Markov’s inequality, at most O(|R|7/8) can be
exceptional. Let R′ be the set of exceptional positions.

For any heavy hitter x with A ⊆ Δx ⊂ R, either Δx − A ⊆ R′ or j ∈ Δx

for some j ∈ R − R′. So we output A to the list of heavy hitters, then recurse
on (A,R′) and recurse on (A ∪ j, R) for each j ∈ R − R′. This covers all of the
above cases recursively.

We now have to give a time analysis for the above algorithm. Let K =
�2QA,R/ε� be a measure of how far we are from being able to prune our current
set. Let r represent the size of R. We give our bound in terms of the number
of recursive calls T (K, r) needed for these values. First, if K = 0, we prune
and terminate. So T (0, r) = 1. If r < O(log2 1/ε), we use brute force search
and take time (1/ε)O(log log 1/ε). If r > O(1/ε8), we make only one recursive
call that isn’t immediately pruned, to a subset R′ of size at most O(|R|7/8). So
we shrink R without branching until r = O(1/ε8). Otherwise, we make up to
r “typical j” recursive calls where K decreases by a r−1/8 factor, and one “ex-
traordinary” recursive call where r becomes O(r7/8). Thus, we have the recursion
T (K, r) ≤ rT (Kr−1/8, r) + T (2/ε, r7/8). Unwinding the first part of the recur-
sion, each time we lose a factor of r1/8 from K, it costs us a factor of r. So we
get T (K, r) ≤ K8T (2/ε, r7/8). This recursion has O(log log r) = O(log log 1/ε)
depth, each giving a factor of (2/ε)8 for a total of (1/ε)O(log log 1/ε) recursive calls.
The leaves of the recursion cost us a similar factor as mentioned earlier. During
each recursion, we have to compute Q r times, which gives another polynomial
factor to the total running time. Thus the total time is (1/ε)O(log log 1/ε), as is
the list length.
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4 Lower Bounds on Enumeration

We first review the result from [3] on the lower bound for the number of samples
required for estimation. Let n = log 1/α. Consider two distributions D0 and D1.
D1 is the uniform distribution over n-bit strings, D0 the uniform distribution
on those n-bit strings with even parity. In D0 the all-zero string has probability
2α, and in D1, α, so any α/3 estimation algorithm has to distinguish between
the two.

However, both distributions are uniform when we restrict strings to any proper
subset of the bit positions. Let Q = (Q1, Q2, · · · , Qt) be any sequence where for
1 ≤ i ≤ t, Qi ⊂ [1..n] is a set of bit positions. Assume that for each 1 ≤ i ≤ t, i’th
sample reveals exactly the bits in positions given by Qi. Based on this condition
and assuming that none of the Qi is the entire set of positions, the induced
distributions on lossy samples are identical. Any distinguishing algorithm has to
wait until it sees at least one sample with all bits revealed. The probability of
this occurring with any one sample is (1 − μ)n, so the time required is at least
(1−μ)−n = (1− μ)logα = αlog(1−μ). Hence if μ = 1− o(1), this is (1/α)ω(1) and
is super-polynomial.

Note that these two distributions give no lower bound on the number of
samples required for enumeration, since an enumeration algorithm could just
list all 1/α strings of length n without seeing any samples at all. However, we
will present a very similar argument that shows a lower bound for enumeration.
For this, we need to increase the value of n without increasing the support size.
To achieve this condition, we look at sparse distributions. We will use the fact
that we are unlikely to reveal even a small constant fraction of the bit positions
when μ = 1−o(1). The following lemma and its corollary establish the existence
of the desired distribution, which are stated without proof.

Lemma 1. Let 1/2 > γ > 0. There is a γn-wise independent distribution on

strings of length n that has support size 2O(γ log( 1
γ )n).

Corollary 1. For any string x of length n, there is a distribution on strings
of length n that is γn-wise independent, and where x has probability at least

2−O(γ log( 1
γ )n).

Now, let μ = 1 − 1/L. If μ = 1 − o(1), L = ω(1). We will show that the sam-
ple complexity or the list size of any algorithm the enumerates ε-heavy hitters
from lossy samples with erasure probability μ is super-polynomial in 1/ε. Let

G be such that L = eG1+ G
log G and let γ = 1/G. G will be Θ(logL) (since

the right side is 2Θ(G)). For any n, select a random n-bit string x and run the

enumeration algorithm with ε = 2−Ω(γn log 1
γ ) = 2−O(logG/G) using the γn-wise

independent distribution with x in its support as obtained from the corollary.
Say that the algorithm gets t lossy samples and enumerates a list of size t′.
Let S = (S1, · · · , St) be the sequence of sets of revealed bit positions in the
samples. If every set in the sequence S has size at most γn, the observed sam-
ples are independent of x. Hence the conditional probability that x is on the



360 L. Batman et al.

list is at most t′/2n. So either t′ = Ω(2n) = (1ε )
Ω(G/ logG) = (1ε )

Ω(logL/ log logL)

or there is a constant probability that some |Si| > γn. Since each position is
revealed with probability 1/L and there are

(
n
γn

) ≤ (e/γ)γn = (eG)n/G sub-
sets of γn positions, the probability that any one Si is of size ≥ γn is at
most (eG)n/G(1/L)n/G = (eG/L)n/G. Hence, for any one of the Si to have
size more than γn, we must have t > (L/eG)n/G = (GG/ logG)n/G by our
choice of G. Now, ε = 2−Ω((n logG)/G) = G−Ω(n/G), so in this case we have
t = ε−Ω(G/ logG = (1ε )

Ω(logL/ log logL). Thus, if L is ω(1), then either the list size
or the number of samples must be super-polynomial in 1/ε, with exponents of
the form Ω(logL/ log logL).

The quantitative bound we get here for enumeration is almost as good as the
one above for estimation. As far as we know, these are the best known lower
bounds for these problems. However, they are pretty far from the upper bounds.

5 Canonical Upper and Lower Bounds for Estimation

Here, we use LP duality to show that either there is a lower bound for estimation
of a certain canonical form, or an algorithm of a canonical form.

The lower bound for estimation shown in [3] has the following form: there are
two distributions that differed by at least α in their probability of 0n, the all-
zero string. However, the induced distributions on lossy samples were statistically
close. The distributions in [3] were completely indistinguishable unless all bits
were revealed, which can only happen with small probability. Consider for now
the noisy case with bit-flipping probability of ν. Any distributions D0, D1 that
differ by α in the all-zero string must be distinguishable by an α/3 estimation
algorithm. Let N0, N1 be the corresponding noisy distributions, and let λ be
the statistical distance of N0 and N1. Then any algorithm that distinguishes the
two requires t = Ω(1/λ) samples. Now, without loss of generality, we can assume
that both distributions are symmetric, so that the probabilities of outputting a
Hamming weight i string for 0 ≤ i ≤ n determine them. Let Δi be the difference
of these two probabilities for weight i. Then Δ0 > α,

∑
Δi = 0 and

∑ |Δi| ≤ 2.
Conversely, any values of Δi satisfying these inequalities give rise to two such
distributions whose differences are Δi for 0 ≤ i ≤ n.

Let mi,j be the probability that a noisy version of a sample of Hamming
weight i ends up with Hamming weight j. An explicit formula for mi,j is mi,j =∑

k

(
i
k

)
(1 − μ)kμi−k

(
n−i
j−k

)
μj−k(1 − μ)n−i−j+k , but we will not be using partic-

ular noisy error model right now. Our treatment works more generally for any
Hamming weight to Hamming weight transformation matrix. Then the differ-
ence between N0 and N1’s probabilities of producing a Hamming weight j string
is

∑
i mi,jΔi. Thus, if we include the inequality

∑
j |

∑
imi,jΔi| ≤ λ in addi-

tion to the ones above, we get that the statistical distance of the noisy versions
is at most λ. Thus, these linear inequalities characterize the existence of such
distributions.

In fact, these inequalities make sense in a very general setting. Let M be a
stochastic n1 × n2 metric with entries mi,j representing the probability: if the
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original sample is of type i, that the observed sample is of type j. The above
inequalities say that there are two distributions on types so that 1/λ observed
samples are required to distinguish them, but differ by α in the probability of
type 0 in the original distributions. So, in particular, any α/3 estimator of the
probability of type 0 requires 1/λ samples. Call such a pair of distributions
(α, λ)-fooling pair of distributions for M .

We now consider a somewhat simplified relation of the inequalities above, but
which preserve the parameters to within polynomial factors. Fix a value for λ.
The primal relaxation has objective to maximize Δ0 subject to the following
inequalities in variables Δ0, . . . , Δn: 1.

∑i=n
i=0 Δi = 0, 2. For each 0 ≤ i ≤ n1,

−1 ≤ Δi ≤ 1, and 3. For each 0 ≤ j ≤ n2,−λ ≤ ∑
mi,jΔi ≤ λ

If there is a solution with Δ0 ≥ α, we can give two distributions N0 and N1

as follows. Let R be the sum of the positive Δi. Note that n1 + 1 ≥ ∑
i |Δi| ≥

R ≥ Δ0 ≥ α. N0 is supported on those i with Δi > 0, and the probability of
strings with Hamming weight i solutions is Δi/R for such i. N1 is supported on
those i with Δi < 0, and the probability of Hamming weight i is −Δi/R.

For any i, the difference between the probabilities is Δi/R. Thus, the differ-
ence between their probabilities of the all-zero string is Δ0/R ≥ α/(n1 + 1),
and the statistical distance between the noisy versions is:

∑
j |

∑
i mi,jΔi/R| =

1/R
∑

j |
∑

i mi,jΔi| ≤ λ(n2 + 1)/R ≤ λ(n2 + 1)/α.
So if the optimum objective is greater than α, there are two distributions such

that their noisy versions are indistinguishable to within λ(n2 + 1)/α. Thus, any
α/(3(n1 + 1)) estimation algorithm will require α/((n2 + 1)λ) samples.

If the optimum objective is less than α, consider the dual system of inequal-
ities. Say we multiply the first equation by w > 0, the lower bound in the i’th
example of the second set of inequalities by ui > 0, the upper bound by vi > 0,
the lower bound in the j’th example in the third set of inequalities by yj > 0
and the upper bound by zj > 0. Then we get the induced inequality∑

i(w + vi − ui +
∑

j(zj − yj)mi,j)Δi ≤
∑

i(ui + vi) + λ
∑

j(yj + zj).
So the dual is to minimize

∑
i(ui + vi) + λ

∑
j(yj + zj) subject to w + v0 −

u0 +
∑

j(zj − yj)m0,j = 1 and w+ vi − ui +
∑

j(zj − yj)mi,j = 0 for n1 ≥ i ≥ 1.
Note that if the objective is less than α, then so is each ui and vi, each yj and
zj are at most α/λ, and w < |v1 − u1|+maxj |zj − yj | = O(α/λ).

Let βj = (zj − yj) + w, and consider the algorithm : Let J be the random
variable given by the observed type of the noisy sample. Estimate the expected
value of βJ to within O(α). The constraints say that, on a type 0 input, the
expectation of βJ is 1+O(α) and on any other Hamming weight, the expectation
is O(α) in absolute value.

Thus, the expectation of βJ will be within O(α) of the probability of the orig-
inal sample being type 0. Since each |βj | is at most O(α/λ), we can estimate the
expectation to within α using O(1/λ2) samples. In the language of [3]. the vector
β is a local inverse of M at 0. We summarize the discussion in the following:

Theorem 1. Let M be any n1 × n2 stochastic matrix, and let 0 < α, λ < 1.
Then either there is an pair of (α, λ)-fooling distributions for M (and hence,
any α/3-estimator for the probability of 0 requires Ω(1/λ) samples ) or there is
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a local inverse for M with maximum coefficients of size O(n1n2α/λ) (and hence
there is a time polynomial in n1, n2 and 1/λ algorithm to estimate the probability
of 0 within O(α)).
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Preface

This volume contains the papers presented at the 16th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (AP-
PROX 2013) and the 17th International Workshop on Randomization and Com-
putation (RANDOM 2013), which took place concurrently in UC Berkeley, dur-
ing August 21–23, 2013. APPROX focuses on algorithmic and complexity issues
surrounding the development of efficient approximate solutions to computation-
ally difficult problems, and was the 16th in the series after Aalborg (1998),
Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome (2002), Princeton
(2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton (2007),
Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011), and Boston
(2012). RANDOM is concerned with applications of randomness to computa-
tional and combinatorial problems, and was the 17th workshop in the series
following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva (2000),
Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berke-
ley (2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009),
Barcelona (2010), Princeton (2011), and Boston (2012).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space algorithms,
sub-linear time algorithms, streaming algorithms, embeddings and metric space
methods, mathematical programmingmethods, combinatorial problems in graphs
and networks, game theory, markets and economic applications, geometric prob-
lems, packing, covering, scheduling, approximate learning, design and analysis
of online algorithms, design and analysis of randomized algorithms, randomized
complexity theory, pseudorandomness and derandomization, random combinato-
rial structures, random walks/Markov chains, expander graphs and randomness
extractors, probabilistic proof systems, random projections and embeddings,
error-correcting codes, average-case analysis, property testing, computational
learning theory, and other applications of approximation and randomness.

The volume contains 23 papers, selected by the APPROX Program Commit-
tee out of 46 submissions, and 25 papers, selected by the RANDOM Program
Committee out of 52 submissions. In addition to presentations on these papers,
the program included invited talks by Persi Diaconis (Stanford University, USA),
Luca Trevisan (Stanford University, USA), and Santosh Vempala (Georgia Tech,
USA).

We would like to thank all of the authors who submitted papers, the invited
speakers, the members of the Program Committees, and the external reviewers.
We gratefully acknowledge the support from the Computer Science Division,
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University of California, Berkeley, the Department of Computer Science and
Engineering at the Pennsylvania State University, the Institute of Computer
Science of the Christian-Albrechts-Universität zu Kiel and the Department of
Computer Science of the University of Geneva.
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Sofya Raskhodnikova
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Partial Interval Set Cover – Trade-Offs between Scalability and
Optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Katherine Edwards, Simon Griffiths, and William Sean Kennedy

Online Square-into-Square Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Sándor P. Fekete and Hella-Franziska Hoffmann

Online Non-clairvoyant Scheduling to Simultaneously Minimize All
Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Kyle Fox, Sungjin Im, Janardhan Kulkarni, and Benjamin Moseley



XII Table of Contents

Shrinking Maxima, Decreasing Costs: New Online Packing and
Covering Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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