14,240 research outputs found

    A Model to Identify Affordances for Game-Based Sustainability Learning

    Get PDF
    Sustainability learning requires the assimilation of domain-specific knowledge and the development of mindsets suitable to engage in complex system dynamics to foster sustainable action. There is a need for bespoke educational models and practical tools to foster sustainability learning. Digital games can answer such need, due to their remarkable potential to wholly engage players in sustainability-related contexts and problems entailing complex dynamics, and the advantages of intrinsically motivating game-based learning processes. However, there is evidence suggesting that such potential might be underexploited. To address this, in this paper we present a model for the identification and analysis of game-based sustainability learning affordances. Our model can be used to support the selection of games for educational purposes, or to facilitate the planning and introduction of game-based sustainability learning affordances when designing new games

    Endogenous fantasy and learning in digital games.

    Get PDF
    Many people believe that educational games are effective because they motivate children to actively engage in a learning activity as part of playing the game. However, seminal work by Malone (1981), exploring the motivational aspects of digital games, concluded that the educational effectiveness of a digital game depends on the way in which learning content is integrated into the fantasy context of the game. In particular, he claimed that content which is intrinsically related to the fantasy will produce better learning than that which is merely extrinsically related. However, this distinction between intrinsic and extrinsic (or endogenous and exogenous) fantasy is a concept that has developed a confused standing over the following years. This paper will address this confusion by providing a review and critique of the empirical and theoretical foundations of endogenous fantasy, and its relevance to creating educational digital games. Substantial concerns are raised about the empirical basis of this work and a theoretical critique of endogenous fantasy is offered, concluding that endogenous fantasy is a misnomer, in so far as the "integral and continuing relationship" of fantasy cannot be justified as a critical means of improving the effectiveness of educational digital games. An alternative perspective on the intrinsic integration of learning content is described, incorporating game mechanics, flow and representations

    Designing for mathematical abstraction

    Get PDF
    Our focus is on the design of systems (pedagogical, technical, social) that encourage mathematical abstraction, a process we refer to as designing for abstraction. In this paper, we draw on detailed design experiments from our research on children's understanding about chance and distribution to re-present this work as a case study in designing for abstraction. Through the case study, we elaborate a number of design heuristics that we claim are also identifiable in the broader literature on designing for mathematical abstraction. Our previous work on the micro-evolution of mathematical knowledge indicated that new mathematical abstractions are routinely forged in activity with available tools and representations, coordinated with relatively naïve unstructured knowledge. In this paper, we identify the role of design in steering the micro-evolution of knowledge towards the focus of the designer's aspirations. A significant finding from the current analysis is the identification of a heuristic in designing for abstraction that requires the intentional blurring of the key mathematical concepts with the tools whose use might foster the construction of that abstraction. It is commonly recognized that meaningful design constructs emerge from careful analysis of children's activity in relation to the designer's own framework for mathematical abstraction. The case study in this paper emphasizes the insufficiency of such a model for the relationship between epistemology and design. In fact, the case study characterises the dialectic relationship between epistemological analysis and design, in which the theoretical foundations of designing for abstraction and for the micro-evolution of mathematical knowledge can co-emerge. © 2010 Springer Science+Business Media B.V

    Ms Pac-Man versus Ghost Team CEC 2011 competition

    Get PDF
    Games provide an ideal test bed for computational intelligence and significant progress has been made in recent years, most notably in games such as Go, where the level of play is now competitive with expert human play on smaller boards. Recently, a significantly more complex class of games has received increasing attention: real-time video games. These games pose many new challenges, including strict time constraints, simultaneous moves and open-endedness. Unlike in traditional board games, computational play is generally unable to compete with human players. One driving force in improving the overall performance of artificial intelligence players are game competitions where practitioners may evaluate and compare their methods against those submitted by others and possibly human players as well. In this paper we introduce a new competition based on the popular arcade video game Ms Pac-Man: Ms Pac-Man versus Ghost Team. The competition, to be held at the Congress on Evolutionary Computation 2011 for the first time, allows participants to develop controllers for either the Ms Pac-Man agent or for the Ghost Team and unlike previous Ms Pac-Man competitions that relied on screen capture, the players now interface directly with the game engine. In this paper we introduce the competition, including a review of previous work as well as a discussion of several aspects regarding the setting up of the game competition itself. © 2011 IEEE

    Quantum Computing in the NISQ era and beyond

    Get PDF
    Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.Comment: 20 pages. Based on a Keynote Address at Quantum Computing for Business, 5 December 2017. (v3) Formatted for publication in Quantum, minor revision
    corecore