15 research outputs found

    Short seed extractors against quantum storage

    Full text link
    Some, but not all, extractors resist adversaries with limited quantum storage. In this paper we show that Trevisan's extractor has this property, thereby showing an extractor against quantum storage with logarithmic seed length

    Quantum entropic security and approximate quantum encryption

    Full text link
    We present full generalisations of entropic security and entropic indistinguishability to the quantum world where no assumption but a limit on the knowledge of the adversary is made. This limit is quantified using the quantum conditional min-entropy as introduced by Renato Renner. A proof of the equivalence between the two security definitions is presented. We also provide proofs of security for two different cyphers in this model and a proof for a lower bound on the key length required by any such cypher. These cyphers generalise existing schemes for approximate quantum encryption to the entropic security model.Comment: Corrected mistakes in the proofs of Theorems 3 and 6; results unchanged. To appear in IEEE Transactions on Information Theory

    Short seed extractors against quantum storage

    Full text link

    Leftover Hashing Against Quantum Side Information

    Full text link
    The Leftover Hash Lemma states that the output of a two-universal hash function applied to an input with sufficiently high entropy is almost uniformly random. In its standard formulation, the lemma refers to a notion of randomness that is (usually implicitly) defined with respect to classical side information. Here, we prove a (strictly) more general version of the Leftover Hash Lemma that is valid even if side information is represented by the state of a quantum system. Furthermore, our result applies to arbitrary delta-almost two-universal families of hash functions. The generalized Leftover Hash Lemma has applications in cryptography, e.g., for key agreement in the presence of an adversary who is not restricted to classical information processing

    Quantum authentication and encryption with key recycling

    Get PDF
    We propose an information-theoretically secure encryption scheme for classical messages with quantum ciphertexts that offers detection of eavesdropping attacks, and re-usability of the key in case no eavesdropping took place: the entire key can be securely re-used for encrypting new messages as long as no attack is detected. This is known to be impossible for fully classical schemes, where there is no way to detect plain eavesdropping attacks. This particular application of quantum techniques to cryptography was originally proposed by Bennett, Brassard and Breidbart in 1982, even before proposing quantum-key-distribution, and a simple candidate scheme was suggested but no rigorous security analysis was given. The idea was picked up again in 2005, when Damgård, Pedersen and Salvail suggested a new scheme for the same task, but now with a rigorous security analysis. However, their scheme is much more demanding in terms of quantum capabilities: it requires the users to have a quantum computer. In contrast, and like the original scheme by Bennett et al., our new scheme requires from the honest users merely to prepare and measure single BB84 qubits. As such, we not only show the first provably-secure scheme that is within reach of current technology, but we also confirm Bennett et al.’s original intuition that a scheme in the spirit of their original construction is indeed secure

    Sampling of min-entropy relative to quantum knowledge

    Full text link
    Let X_1, ..., X_n be a sequence of n classical random variables and consider a sample of r positions selected at random. Then, except with (exponentially in r) small probability, the min-entropy of the sample is not smaller than, roughly, a fraction r/n of the total min-entropy of all positions X_1, ..., X_n, which is optimal. Here, we show that this statement, originally proven by Vadhan [LNCS, vol. 2729, Springer, 2003] for the purely classical case, is still true if the min-entropy is measured relative to a quantum system. Because min-entropy quantifies the amount of randomness that can be extracted from a given random variable, our result can be used to prove the soundness of locally computable extractors in a context where side information might be quantum-mechanical. In particular, it implies that key agreement in the bounded-storage model (using a standard sample-and-hash protocol) is fully secure against quantum adversaries, thus solving a long-standing open problem.Comment: 48 pages, late
    corecore