research

Quantum entropic security and approximate quantum encryption

Abstract

We present full generalisations of entropic security and entropic indistinguishability to the quantum world where no assumption but a limit on the knowledge of the adversary is made. This limit is quantified using the quantum conditional min-entropy as introduced by Renato Renner. A proof of the equivalence between the two security definitions is presented. We also provide proofs of security for two different cyphers in this model and a proof for a lower bound on the key length required by any such cypher. These cyphers generalise existing schemes for approximate quantum encryption to the entropic security model.Comment: Corrected mistakes in the proofs of Theorems 3 and 6; results unchanged. To appear in IEEE Transactions on Information Theory

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019