267 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    A Genetic Algorithm-based Beamforming Approach for Delay-constrained Networks

    Get PDF
    In this paper, we study the performance of initial access beamforming schemes in the cases with large but finite number of transmit antennas and users. Particularly, we develop an efficient beamforming scheme using genetic algorithms. Moreover, taking the millimeter wave communication characteristics and different metrics into account, we investigate the effect of various parameters such as number of antennas/receivers, beamforming resolution as well as hardware impairments on the system performance. As shown, our proposed algorithm is generic in the sense that it can be effectively applied with different channel models, metrics and beamforming methods. Also, our results indicate that the proposed scheme can reach (almost) the same end-to-end throughput as the exhaustive search-based optimal approach with considerably less implementation complexity

    Multiuser Millimeter Wave Beamforming Strategies with Quantized and Statistical CSIT

    Full text link
    To alleviate the high cost of hardware in mmWave systems, hybrid analog/digital precoding is typically employed. In the conventional two-stage feedback scheme, the analog beamformer is determined by beam search and feedback to maximize the desired signal power of each user. The digital precoder is designed based on quantization and feedback of effective channel to mitigate multiuser interference. Alternatively, we propose a one-stage feedback scheme which effectively reduces the complexity of the signalling and feedback procedure. Specifically, the second-order channel statistics are leveraged to design digital precoder for interference mitigation while all feedback overhead is reserved for precise analog beamforming. Under a fixed total feedback constraint, we investigate the conditions under which the one-stage feedback scheme outperforms the conventional two-stage counterpart. Moreover, a rate splitting (RS) transmission strategy is introduced to further tackle the multiuser interference and enhance the rate performance. Consider (1) RS precoded by the one-stage feedback scheme and (2) conventional transmission strategy precoded by the two-stage scheme with the same first-stage feedback as (1) and also certain amount of extra second-stage feedback. We show that (1) can achieve a sum rate comparable to that of (2). Hence, RS enables remarkable saving in the second-stage training and feedback overhead.Comment: submitted to TW

    Codebook Based Hybrid Precoding for Millimeter Wave Multiuser Systems

    Get PDF
    In millimeter wave (mmWave) systems, antenna architecture limitations make it difficult to apply conventional fully digital precoding techniques but call for low cost analog radio-frequency (RF) and digital baseband hybrid precoding methods. This paper investigates joint RF-baseband hybrid precoding for the downlink of multiuser multi-antenna mmWave systems with a limited number of RF chains. Two performance measures, maximizing the spectral efficiency and the energy efficiency of the system, are considered. We propose a codebook based RF precoding design and obtain the channel state information via a beam sweep procedure. Via the codebook based design, the original system is transformed into a virtual multiuser downlink system with the RF chain constraint. Consequently, we are able to simplify the complicated hybrid precoding optimization problems to joint codeword selection and precoder design (JWSPD) problems. Then, we propose efficient methods to address the JWSPD problems and jointly optimize the RF and baseband precoders under the two performance measures. Finally, extensive numerical results are provided to validate the effectiveness of the proposed hybrid precoders.Comment: 35 pages, 9 figures, to appear in Trans. on Signal Process, 201

    Multiuser Random Beamforming in Millimetre-Waves Channels

    Get PDF
    This thesis aims to show that in mmWaves channels, schemes based on randomly-directional beamforming allow to harness both the spatial multiplexing and multi-user diversity characterizing the broadcast channel by using only limited feedback and a simple transmitter architecture. The number of necessary users with respect to the number of transmitting antennas for optimal performances is investigated as well as the fairness issue, for which the use of NOMA is shown to be advantageous w.r.t. OMA

    Spectrum Sharing in mmWave Cellular Networks via Cell Association, Coordination, and Beamforming

    Full text link
    This paper investigates the extent to which spectrum sharing in mmWave networks with multiple cellular operators is a viable alternative to traditional dedicated spectrum allocation. Specifically, we develop a general mathematical framework by which to characterize the performance gain that can be obtained when spectrum sharing is used, as a function of the underlying beamforming, operator coordination, bandwidth, and infrastructure sharing scenarios. The framework is based on joint beamforming and cell association optimization, with the objective of maximizing the long-term throughput of the users. Our asymptotic and non-asymptotic performance analyses reveal five key points: (1) spectrum sharing with light on-demand intra- and inter-operator coordination is feasible, especially at higher mmWave frequencies (for example, 73 GHz), (2) directional communications at the user equipment substantially alleviate the potential disadvantages of spectrum sharing (such as higher multiuser interference), (3) large numbers of antenna elements can reduce the need for coordination and simplify the implementation of spectrum sharing, (4) while inter-operator coordination can be neglected in the large-antenna regime, intra-operator coordination can still bring gains by balancing the network load, and (5) critical control signals among base stations, operators, and user equipment should be protected from the adverse effects of spectrum sharing, for example by means of exclusive resource allocation. The results of this paper, and their extensions obtained by relaxing some ideal assumptions, can provide important insights for future standardization and spectrum policy.Comment: 15 pages. To appear in IEEE JSAC Special Issue on Spectrum Sharing and Aggregation for Future Wireless Network
    • …
    corecore