7 research outputs found

    A Quasi-Polynomial Time Partition Oracle for Graphs with an Excluded Minor

    Full text link
    Motivated by the problem of testing planarity and related properties, we study the problem of designing efficient {\em partition oracles}. A {\em partition oracle} is a procedure that, given access to the incidence lists representation of a bounded-degree graph G=(V,E)G= (V,E) and a parameter \eps, when queried on a vertex vVv\in V, returns the part (subset of vertices) which vv belongs to in a partition of all graph vertices. The partition should be such that all parts are small, each part is connected, and if the graph has certain properties, the total number of edges between parts is at most \eps |V|. In this work we give a partition oracle for graphs with excluded minors whose query complexity is quasi-polynomial in 1/\eps, thus improving on the result of Hassidim et al. ({\em Proceedings of FOCS 2009}) who gave a partition oracle with query complexity exponential in 1/\eps. This improvement implies corresponding improvements in the complexity of testing planarity and other properties that are characterized by excluded minors as well as sublinear-time approximation algorithms that work under the promise that the graph has an excluded minor.Comment: 13 pages, 1 figur

    The Entropy of Backwards Analysis

    Full text link
    Backwards analysis, first popularized by Seidel, is often the simplest most elegant way of analyzing a randomized algorithm. It applies to incremental algorithms where elements are added incrementally, following some random permutation, e.g., incremental Delauney triangulation of a pointset, where points are added one by one, and where we always maintain the Delauney triangulation of the points added thus far. For backwards analysis, we think of the permutation as generated backwards, implying that the iith point in the permutation is picked uniformly at random from the ii points not picked yet in the backwards direction. Backwards analysis has also been applied elegantly by Chan to the randomized linear time minimum spanning tree algorithm of Karger, Klein, and Tarjan. The question considered in this paper is how much randomness we need in order to trust the expected bounds obtained using backwards analysis, exactly and approximately. For the exact case, it turns out that a random permutation works if and only if it is minwise, that is, for any given subset, each element has the same chance of being first. Minwise permutations are known to have Θ(n)\Theta(n) entropy, and this is then also what we need for exact backwards analysis. However, when it comes to approximation, the two concepts diverge dramatically. To get backwards analysis to hold within a factor α\alpha, the random permutation needs entropy Ω(n/α)\Omega(n/\alpha). This contrasts with minwise permutations, where it is known that a 1+ε1+\varepsilon approximation only needs Θ(log(n/ε))\Theta(\log (n/\varepsilon)) entropy. Our negative result for backwards analysis essentially shows that it is as abstract as any analysis based on full randomness

    How Long It Takes for an Ordinary Node with an Ordinary ID to Output?

    Full text link
    In the context of distributed synchronous computing, processors perform in rounds, and the time-complexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes. The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken over every node of the instance, of the number of rounds before that node output. We compare the node-averaged time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity, as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the slowest node time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-complexity, when the number of rounds is averaged over all possible identity assignments. Our second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-averaged time-complexity.Comment: (Submitted) Journal versio

    Время работы алгоритма Краскала с древовидной и списочной структурой данных

    No full text
    Путем численных экспериментов выполнено сравнение двух реализаций алгоритма Краскала, основанных на списочной (предложенный алгоритм) и древовидной (алгоритм Тарьяна) структуре данных и алгоритма Прима.За допомогою чисельних експериментів виконано порівняння двох реалізацій алгоритму Краскала, які основано на списковій (запропонований алгоритм) і деревовидній (алгоритм Тарьяна) структурах даних та алгоритму Прима.Using numerical experiments, two implementations of Kruskal's algorithm based on the linked lists (the proposed algorithm) and tree (Tarjan's algorithm) data structures were compared with Prim's algorithm
    corecore