5,152 research outputs found

    Randomized Dimension Reduction on Massive Data

    Full text link
    Scalability of statistical estimators is of increasing importance in modern applications and dimension reduction is often used to extract relevant information from data. A variety of popular dimension reduction approaches can be framed as symmetric generalized eigendecomposition problems. In this paper we outline how taking into account the low rank structure assumption implicit in these dimension reduction approaches provides both computational and statistical advantages. We adapt recent randomized low-rank approximation algorithms to provide efficient solutions to three dimension reduction methods: Principal Component Analysis (PCA), Sliced Inverse Regression (SIR), and Localized Sliced Inverse Regression (LSIR). A key observation in this paper is that randomization serves a dual role, improving both computational and statistical performance. This point is highlighted in our experiments on real and simulated data.Comment: 31 pages, 6 figures, Key Words:dimension reduction, generalized eigendecompositon, low-rank, supervised, inverse regression, random projections, randomized algorithms, Krylov subspace method

    Randomized hybrid linear modeling by local best-fit flats

    Full text link
    The hybrid linear modeling problem is to identify a set of d-dimensional affine sets in a D-dimensional Euclidean space. It arises, for example, in object tracking and structure from motion. The hybrid linear model can be considered as the second simplest (behind linear) manifold model of data. In this paper we will present a very simple geometric method for hybrid linear modeling based on selecting a set of local best fit flats that minimize a global l1 error measure. The size of the local neighborhoods is determined automatically by the Jones' l2 beta numbers; it is proven under certain geometric conditions that good local neighborhoods exist and are found by our method. We also demonstrate how to use this algorithm for fast determination of the number of affine subspaces. We give extensive experimental evidence demonstrating the state of the art accuracy and speed of the algorithm on synthetic and real hybrid linear data.Comment: To appear in the proceedings of CVPR 201

    A Nonconvex Projection Method for Robust PCA

    Full text link
    Robust principal component analysis (RPCA) is a well-studied problem with the goal of decomposing a matrix into the sum of low-rank and sparse components. In this paper, we propose a nonconvex feasibility reformulation of RPCA problem and apply an alternating projection method to solve it. To the best of our knowledge, we are the first to propose a method that solves RPCA problem without considering any objective function, convex relaxation, or surrogate convex constraints. We demonstrate through extensive numerical experiments on a variety of applications, including shadow removal, background estimation, face detection, and galaxy evolution, that our approach matches and often significantly outperforms current state-of-the-art in various ways.Comment: In the proceedings of Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19
    • …
    corecore