19 research outputs found

    Verification and validation of quantum systems

    Get PDF

    Quantum Computing for Fusion Energy Science Applications

    Full text link
    This is a review of recent research exploring and extending present-day quantum computing capabilities for fusion energy science applications. We begin with a brief tutorial on both ideal and open quantum dynamics, universal quantum computation, and quantum algorithms. Then, we explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail. Because quantum computers can only efficiently perform linear operations on the quantum state, it is challenging to perform nonlinear operations that are generically required to describe the nonlinear differential equations of interest. In this work, we extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator, the Perron-Frobenius evolution operator, and the Koopman-von Neumann evolution (KvN) operator. We also explicitly derive the connection between the Koopman and Carleman approaches to embedding. Extension of the KvN framework to the complex-analytic setting relevant to Carleman embedding, and the proof that different choices of complex analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert space metric are covered in the appendices. Finally, we conclude with a review of recent quantum hardware implementations of algorithms on present-day quantum hardware platforms that may one day be accelerated through Hamiltonian simulation. We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.Comment: 42 pages; 12 figures; invited paper at the 2021-2022 International Sherwood Fusion Theory Conferenc

    Towards a Machine-Learned Poisson Solver for Low-Temperature Plasma Simulations in Complex Geometries

    Full text link
    Poisson's equation plays an important role in modeling many physical systems. In electrostatic self-consistent low-temperature plasma (LTP) simulations, Poisson's equation is solved at each simulation time step, which can amount to a significant computational cost for the entire simulation. In this paper, we describe the development of a generic machine-learned Poisson solver specifically designed for the requirements of LTP simulations in complex 2D reactor geometries on structured Cartesian grids. Here, the reactor geometries can consist of inner electrodes and dielectric materials as often found in LTP simulations. The approach leverages a hybrid CNN-transformer network architecture in combination with a weighted multiterm loss function. We train the network using highly-randomized synthetic data to ensure the generalizability of the learned solver to unseen reactor geometries. The results demonstrate that the learned solver is able to produce quantitatively and qualitatively accurate solutions. Furthermore, it generalizes well on new reactor geometries such as reference geometries found in the literature. To increase the numerical accuracy of the solutions required in LTP simulations, we employ a conventional iterative solver to refine the raw predictions, especially to recover the high-frequency features not resolved by the initial prediction. With this, the proposed learned Poisson solver provides the required accuracy and is potentially faster than a pure GPU-based conventional iterative solver. This opens up new possibilities for developing a generic and high-performing learned Poisson solver for LTP systems in complex geometries

    Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDES on Tensor-Product Domains

    Get PDF
    This thesis is concerned with the numerical solution of boundary value problems (BVPs) governed by semilinear elliptic partial differential equations (PDEs). Semilinearity here refers to a special case of nonlinearity, i.e., the case of a linear operator combined with a nonlinear operator acting as a perturbation. In general, such BVPs are solved in an iterative fashion. It is, therefore, of primal importance to develop efficient schemes that guarantee convergence of the numerically approximated PDE solutions towards the exact solution. Unlike the typical finite element method (FEM) theory for the numerical solution of the nonlinear operators, the new adaptive wavelet theory proposed in [Cohen.Dahmen.DeVore:2003:a, Cohen.Dahmen.DeVore:2003:b] guarantees convergence of adaptive schemes with fixed approximation rates. Furthermore, optimal, i.e., linear, complexity estimates of such adaptive solution methods have been established. These achievements are possible since wavelets allow for a completely new perspective to attack BVPs: namely, to represent PDEs in their original infinite dimensional realm. Wavelets are the ideal candidate for this purpose since they allow to represent functions in infinite-dimensional general Banach or Hilbert spaces and operators on these. The purpose of adaptivity in the solution process of nonlinear PDEs is to invest extra degrees of freedom (DOFs) only where necessary, i.e., where the exact solution requires a higher number of function coefficients to represent it accurately. Wavelets in this context represent function bases with special analytical properties, e.g., the wavelets considered herein are piecewise polynomials, have compact support and norm equivalences between certain function spaces and the l_2 sequence spaces of expansion coefficients exist. This new paradigm presents nevertheless some problems in the design of practical algorithms. Imposing a certain structure, a tree structure, remedies these problems completely while restricting the applicability of the theoretical scheme only very slightly. It turns out that the considered approach naturally fits the theoretical background of nonlinear PDEs. The practical realization on a computer, however, requires to reduce the relevant ingredients to finite-dimensional quantities. It is this particular aspect that is the guiding principle of this thesis. This theoretical framework is implemented in the course of this thesis in a truly dimensionally unrestricted adaptive wavelet program code, which allows one to harness the proven theoretical results for the first time when numerically solving the above mentioned BVPs. In the implementation, great emphasis is put on speed, i.e., overall execution speed and convergence speed, while not sacrificing on the freedom to adapt many important numerical details at runtime and not at the compilation stage. This means that the user can test and choose wavelets perfectly suitable for any specific task without having to rebuild the software. The computational overhead of these freedoms is minimized by caching any interim data, e.g., values for the preconditioners and polynomial representations of wavelets in multiple dimensions. Exploiting the structure in the construction of wavelet spaces prevents this step from becoming a burden on the memory requirements while at the same time providing a huge performance boost because necessary computations are only executed as needed and then only once. The essential BVP boundary conditions are enforced using trace operators, which leads to a saddle point problem formulation. This particular treatment of boundary conditions is very flexible, which especially useful if changing boundary conditions have to be accommodated, e.g., when iteratively solving control problems with Dirichlet boundary control based upon the herein considered PDE operators. Another particular feature is that saddle point problems allow for a variety of different geometrical setups, including fictitious domain approaches. Numerical studies of 2D and 3D PDEs and BVPs demonstrate the feasibility and performance of the developed schemes. Local transformations of the wavelet basis are employed to lower the absolute condition number of the already optimally preconditioned operators. The effect of these basis transformations can be seen in the absolute runtimes of solution processes, where the semilinear PDEs are solved as fast as in fractions of a second. This task can be accomplished using simple Richardson-style solvers, e.g., the method of steepest descent, or more involved solvers like the Newton's method. The BVPs are solved using an adaptive Uzawa algorithm, which requires repeated solution of semilinear PDE sub-problems. The efficiency of different numerical methods is compared and the theoretical optimal convergence rates and complexity estimates are verified. In summary, this thesis presents for the first time a numerically competitive implementation of a new theoretical paradigm to solve semilinear elliptic PDEs in arbitrary space dimensions with a complete convergence and complexity theory

    Snapshot-Based Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Model Order Reduction

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science

    Fourth SIAM Conference on Applications of Dynamical Systems

    Get PDF
    corecore