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ABSTRACT

The goal of this thesis is to explore the extent and limitations of existing techniques
for the verification and validation of quantum systems, and to develop new
techniques that are: (i) more efficient; (ii) mathematically rigorous; and (iii)
practically implementable.

We give a survey of contemporary techniques and protocols for the verification
and characterisation of quantum states and processes, before deriving efficient
protocols of our own. We construct an optimally efficient protocol constructed from
local measurements for verifying that the output of an experiment agrees with a
known target state, for both two-qubit and stabilizer states. We then show that this
protocol is also optimal for the task of estimating the fidelity to a known target
state, and to analyse its effectiveness we run both the optimal protocol and its
closest competitors on a silicon-based photonic chip designed to produce arbitrary
two-qubit states.

We discuss the validation of quantum systems in two contexts. Firstly, we
validate a quantum computational advantage over classical computers when faced
with the task of producing solutions to differential equations via the finite element
method. Secondly, we provide a blueprint for the validation of quantum effects in
general relativistic systems, by outlining a space-based experiment designed to test
the interplay between the two theories.
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C H A P T E R 1

INTRODUCTION

1.1 Quantum systems

This dissertation concerns quantum systems; that is, systems that fundamentally

require quantum mechanics to describe their operation. Of particular importance

are quantum technologies; technologies that process information in a fundamentally

quantum mechanical way, to achieve a particular goal. One might be tempted to

include venerable 20th century technologies such as the transistor or the laser in

this categorisation, as the most faithful physical model of their operation is a

quantum mechanical one. However, the information processing of a transistor is

sufficiently described by classical information theory, and its operation could be

mimicked (albeit with a probable cost in both size and ease of use) by a fully classical

device. Instead, we will be concerned with devices that use quantum mechanical

effects, such as superposition and entanglement, to process information quantum

mechanically. In particular, we have the following emerging technologies in mind:

1. Quantum computing.

2. Quantum communications and cryptography.

3. Quantum sensing and imaging.

Theoretical and experimental progress on each of these technologies is being made

at an ever accelerating rate. It is already possible to buy commercial quantum

cryptography systems, and devices have been developed that are compact and robust

enough to be space-qualified and operated in orbit [88]. Key components of quantum

sensing systems, such as atomic clocks and frequency combs, are also commercially

available. In quantum computing, the size and complexity of hardware is developing

rapidly after a period of slow growth, with the number of controllable qubits

increasing by an order of magnitude in the last two years [73, 168, 126]. This is

1



CHAPTER 1. INTRODUCTION

progressing in tandem with the development of both more elaborate and practical

pieces of quantum software and quantum algorithms [161, 123]. As the size and

complexity of these devices increases, development of suites of verification tools

becomes imperative; both for the understanding of the current iteration of quantum

technologies, and to inform the design and operation of future iterations.

1.2 Verification, validation and characterisation

The tasks of verification, validation and characterisation are both computationally

and intellectually intensive for any complex system, not just for those described by

quantum mechanics. Quantum systems are not singular in having rich and

complicated mathematical structure, nor in having a large and rapidly expanding

number of highly engineered components that need to be tested to specification.

These testing procedures are critical to the successful operation of most complex

devices. As a case in point, on the 11th of December, 1998, NASA launched the Mars

Climate Orbiter, a $327m mission to explore the changing climate and water

composition of Mars over geologic time scales. The orbiter would travel almost 700

million kilometres over the course of the next 300 days, culminating in an

interception with Mars and an insertion in its orbit. On the 23rd of September, 1999,

this orbital insertion was initiated; the process began at around 08:45. By 09:15, the

orbiter had completely disintegrated, vaporised by the drag caused by the Martian

atmosphere. The cause was a miscalibration of the trajectory of the orbiter. Over the

course of its nine month journey the orbiter, like most interplanetary missions,

needed to calibrate and correct its path by firing small thrusters on the side of craft.

A piece of on board software would calculate the forces and torques on the orbiter

from the thruster firings, broadcast the data to Earth, and a computation on Earth

would revise the predicted trajectory. However, the on board software, written by

Lockheed Martin, calculated the forces and torques in imperial units before

broadcasting them to Earth. NASA’s software, expecting metric units, erroneously

corrected for a force that was twice the magnitude of the true force, culminating in a

trajectory that deviated enough to send the orbiter deep into Mars’ atmosphere.

While the error was avoidable, the failure of systems to verify the calculation was

inexcusable. NASA’s official incident report cited failure of verification and

validation systems as a key cause of the mission’s failure [134]. If we are to

successfully operate quantum devices that are of a comparable size and complexity,

we must heavily scrutinise our ability to test them effectively.

The nomenclature “verification, validation and characterisation” often appears

as a triplet, and colloquially, we often use each term semi-synonymously. However,

2



1.2. VERIFICATION, VALIDATION AND CHARACTERISATION

in most contexts (and particularly in the quantum context that will form the

backbone of this thesis), they are not interchangeable; they satisfy distinct roles in

the assessment of systems. We will use the following operational definitions [189]:

• Verification: The process by which a system is tested to determine whether it

satisfies a particular specification. The specification need not be a fully

parameterised model of the system; it may be a certain set of requirements,

properties or criteria.

• Characterisation: An instance of a verification task, where the specification

explicitly is a fully parameterised model of the system.

• Validation: The process by which the specification itself is scrutinised, to

determine whether it is stringent enough for the device or system to

successfully complete a task on behalf of a user.

We will shortly discuss each of these tasks in detail in the context of quantum

systems. In the context of verification of classical software and hardware, some

important distinctions are made between different families of verification protocols.

The first distinction to be made is between formal verification methods, and

empirical verification methods. Formal verification concerns guaranteeing the

correctness of a system by strict mathematical or logical deduction. These methods

typically require three steps: (i) the construction of a suitable mathematical model

of the system being interrogated; (ii) a specification that outlines a set of salient

parameters from the model and acceptable ranges of values; and (iii) some logical or

mathematical machinery that maps from the model to a statement about whether

the system meets the specification. This proof machinery can either be worked

through by hand, semi-automated in the sense that the proof is provided by a user

and checked by computer, or fully delegated to a computer that makes use of

automated proof methods.

Furthermore, formal verification broadly breaks down into two subcategories:

deductive verification and model checking. Model checking takes a comprehensive

approach - given a specification of the system, model checking methods exhaustively

explore the entire state space of the model to determine whether the system is to

specification. In this sense, model checking is very closely related to the process of

characterisation. Deductive verification refers to the construction of a set of proof

obligations for the model and the specification, the correctness of which is sufficient

to ensure that the system is to specification. Both of these protocols have utility.

Model checking is, in principle, fully autonomous and requires minimal input from a

verifier, and in broad classes of instances can be guaranteed to terminate with a

consistent answer to the verification protocol, given the necessary computational

3



CHAPTER 1. INTRODUCTION

resources. Conversely, the computational resources that it requires blows up

significantly with the size of the state space of the model, and so model checking

very complex systems is computationally prohibitive [60]. This blow up in resources

is combated (but not wholly defeated) by finding efficient representations of the

model, or by exploiting some symmetry or modularity in the system [59]. Deductive

verification, on the other hand, does not experience this state space explosion

problem as acutely, but generally requires a large degree of human input to derive a

set of sufficient proof rules from the specification that the system must be checked

against.

In contrast to formal verification, empirical verification involves preparing a set

of experiments for the model in the hope that this set captures the typical behaviour

of the system, possibly coupled with some reasoning about the likelihood and

mitigation of atypical cases. Empirical verification also subdivides into two

categories: simulation and testing. Simulation refers to the scenario where a set of

experiments are run on the model, whereas testing consists of running a set of

experiments on the system directly. Both empirical verification methods can be run

cheaply compared to their formal counterparts, but lack the strong mathematical

guarantees that formal methods provide.

We will use this taxonomy to classify verification methods for quantum systems

in Chapter 2.

1.2.1 Validation of quantum systems

As opposed to verification, the validation of quantum systems is an entirely different

process. To be clear, validation is the process by which the specification itself is

scrutinised, to determine whether it is stringent enough for the device or system to

successfully complete a task on a user’s behalf. Take the following quantum

mechanical example: suppose a user wishes to generate, say, high fidelity Bell states

in order to carry out a quantum cryptography protocol. Verification is the process of

scrutinising the Bell states - is there an infidelity threshold at which the protocol

fails? If so, are the Bell states of high enough fidelity for the protocol to succeed?

Validation, on the other hand, is the process of scrutinising the protocol - does this

cryptography protocol have the security guarantees that the user requires? Does it

satisfy the user’s needs with respect to key rate, or with respect to cost?

In most quantum technologies, the proposed benefit to the user is that there is

some theoretically promised quantum advantage over the technology’s classical

counterparts. Hence the validation of quantum technologies requires showing that,

given some reasonable specification of a quantum device, that it has some

demonstrable quantum advantage that is of benefit to a hypothetical user. In this
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sense, large subfields within quantum information fall under the umbrella of

validation of quantum systems. For example, one of the main goals of quantum

algorithms research is to demonstrate a quantum computational advantage where

either the specification is of an ideal, noiseless quantum computer, or some

representation of a physically realisable quantum computer. The same could be said

of security proofs in quantum cryptography, or of precision bounds in quantum

metrology. As a particular case study, determining the correctness of the quantum

algorithm for solving differential equations presented in Chapter 5 can reasonably

be argued to fall under the remit of validation of quantum systems.

While this notion of validation covers large subfields within quantum

information, there is a tangential notion of validation that is worth exploring for

quantum systems. For most quantum technologies, we assume an axiomatic,

quantum mechanical framework that in principle is sufficient to describe the

operation of that particular technology. However, it may be the case that such

systems fail to behave non-classically, or that this framework is not sufficient in the

setting in which the system operates (for example, a quantum cryptography satellite

operating in a non-negligible gravitational potential). In these cases, “validation”

can be construed as the examination of whether the system actually behaves

quantum mechanically. We will return to this notion of validation in Chapter 6.

1.3 Thesis overview

The first half of this thesis concerns verification of quantum systems. In Chapter 2,

we give an extensive literature review on contemporary techniques for verifying

quantum states and processes. The goal is to use this as a foothold to develop new

techniques for verifying quantum states in Chapters 3 and 4. In Chapter 3, we

examine the verification of quantum states. We devise a framework for state

verification protocols, and a set of desiderata that practically-implementable

verification protocols should satisfy. Within this framework, we develop

copy-optimal verification protocols for two-qubit states and stabilizer states that are

quantitatively, and significantly, more efficient than the prior art. We also introduce

an ansatz for a verification protocol that attains the same efficiency advantage, but

is valid for verification of arbitrary pure states. In Chapter 4, we shift focus to

fidelity estimation protocols. We again develop a framework and desiderata for

protocols for this task, before deriving the most efficient estimator given those

desiderata. We then apply this protocol on output data from a silicon photonic chip

designed to produce arbitrary two-qubit states, and we compare the protocol’s

performance to common alternatives.
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The second half of this thesis concerns validation of quantum systems. In

Chapter 5, we give a quantum algorithm for solving differential equations via the

finite element method, and give the first full analysis of the computational

complexity of a quantum algorithm for this problem. We validate the existence of an

explicit computational advantage over classical counterpart algorithms, and also

give arguments as to why this advantage is unlikely to be significantly improved. In

Chapter 6, we give a blueprint for a space-borne experiment designed to validate

quantum effects in a general relativistic system. We give a full feasibility analysis of

the experiment, including precise calculations of the effect we wish to test, a full

description of the experimental payload, and an analysis of the experiment’s

feasibility given the current capabilities of space-qualified optical components.

1.4 Declaration of contributions and previous
publications

The survey on the verification of quantum systems in Chapter 2 was written

exclusively by the author.

Chapter 3, on the verification of quantum states, is based on research carried out

with Noah Linden and Ashley Montanaro; the results on verification of two-qubit and

stabilizer states were published in Physical Review Letters in March 2018 [178]. Both

the premise and the list of protocol requirements in § 3.2.1 were developed jointly

between the author, AM and NL. The calculation of optimal strategies for Bell states,

two qubit states and stabilizer states in § 3.3, § 3.4 and § 3.5, respectively, were

carried out by the author, with some important proof techniques (for example, the

“strategy averaging” step in § 3.4) contributed by AM and NL. The extension to “soft”

verification in § 3.6 is due to the author. Regarding the extensions to verification of

arbitrary states in § 3.7, the statement of the ansatz in § 3.7.4 is due to AM and NL,

but the remaining analysis is due to the author.

Chapter 4, on fidelity estimation on a photonic chip, is joint work with Xiaogang

Qiang. Specifically, the entirety of the mathematical contributions are the author’s,

with the description and operation of the chip due to XQ (paraphrased from [190]).

Chapter 5, on quantum algorithms for solving partial differential equations,

represents joint work with Ashley Montanaro. The content of this chapter was

published in Physical Review A in March 2016 [164]. The analysis of the finite

element method (FEM) in § 5.1 and § 5.3, as well as the classical complexity of

solving FEM instances § 5.4, is due to the author. The framework for the quantum

algorithm for the FEM in § 5.6 is due to AM, with the complexity analysis due to AM

and the author. The limitations on the quantum algorithm in § 5.8 are due to AM.
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Lastly, Chapter 6, on a blueprint for a simultaneous test of quantum mechanics

and general relativity, was a collaboration between the author and a team of

European colleagues on behalf of the European Space Agency. The content of this

chapter was published in European Physical Journal: Quantum Technology in

February 2017 [179]. The premise and original experimental proposal are due to the

author. The calculations in the scientific background, § 6.2, are due to both the

author and collaborators. The precise details of the payload in § 6.3 were devised by

experimentalists on the team, and those of the mission design in § 6.5 by engineers

on the team. Both aspects were organised and collated by the author. The Monte

Carlo statistical analysis of the mission in § 6.4 is due to the author.

1.5 Nomenclature, conventions and definitions

We will make use of both conventions {1, X , Y , Z} and σk, k = 0,1,2,3 (where the

index ordering matches the former convention) to denote the Pauli matrices. For

tensor products of Pauli matrices, we will also use the symbol σk, but the

dimensionality of the tensor product will be apparent from the range of the index k.

Also, we will often use the shorthand MN = M ⊗ N (i.e. that the composition of

symbols MN refers to the tensor product, rather than the matrix product). In

general the type of product will be obvious from context but will be explicitly pointed

out when necessary.

We use the “squared” definition for the fidelity between two states:

F(ρ,σ) :=
[
tr

(√p
ρσ

p
ρ

)]2
. (1.1)

Unless explicitly stated elsewhere, in the context of verification the parameter ε will

denote the infidelity between two states, F(ρ,σ) = 1− ε. The trace distance is given

by

T(ρ,σ) := 1
2
‖ρ−σ‖1 = 1

2
tr

[√
(ρ−σ)†(ρ−σ)

]
, (1.2)

and in the context of verification we will often denote the trace distance with

parameter εT . The infidelity and trace distance are related by the following

inequalities:

1−
p

1−ε≤ εT ≤p
ε. (1.3)

In the discussion on verification of quantum states in Chapters 2, 3 and 4, lower

case n refers to the number of copies of a particular state ρ that must be consumed

to carry out a particular task (the “copy complexity”). Upper case N refers to the

number of qubits over which a state is defined; |ψ〉 ∈ C2N
. We will alternatively use

d = 2N when this is clearer in terms of notation. We denote the space of density

matrices over Cd as D(Cd).
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C H A P T E R 2

VERIFICATION AND CHARACTERISATION

OF QUANTUM SYSTEMS: A SURVEY

When considering the verification of quantum systems, a plethora of techniques

have been developed over the last 20 years with overlapping sets of advantages,

drawbacks and domains of applicability. Also, the term “quantum system” is

incredibly broad. As such we must be selective about the types of system and

techniques that we will discuss in this chapter. Our focus will be on the verification

and characterisation of quantum states and quantum processes. For systems

describing quantum computations, an extensive and diverse body of literature

regarding verifiability of their outputs (in particular, in the context of interactive

proof systems) has been developed in recent years [86, 157, 35, 109, 87, 83, 151].

However, a full discussion of such systems is outside the scope of this survey.

Our goal will be to provide sufficient background in the field to introduce the

results on state verification in Chapter 3, and the results on fidelity estimation in

Chapter 4. The protocols developed in these chapters are given with a precise

mathematical guarantee on their performance, and we claim that the performance

of these protocols is advantageous with respect to the most closely-applicable prior

art. We therefore consider it fruitful to first discuss the most common prior protocols

for state verification, including: (i) what the protocol tests; (ii) its operational

assumptions; (iii) the existence and quality of performance guarantees; and (iv) its

relationship to the protocols in Chapters 3 and 4.

For both verification of quantum states and of quantum processes, the most

prominent protocols and tools fit quite neatly into the taxonomy that has been long

established for the verification of classical software and hardware [223, 58]; see

Table 2.1. We will now give an overview of established techniques for verification

and characterisation of quantum systems.
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Formal verification Empirical verification

Mantra Characterise
entire model

Check
sufficient

criteria for
model

Check typical model instances

Classical
methods

Model
checking

Deductive
verification

Simulation Testing

Verifying
quantum

states

Quantum
state

tomography
(§ 2.3.1)

Self-testing
(§ 2.1.2),

Direct fidelity
estimation
(§ 2.1.4),
Shadow

tomography
(§ 2.1.5)

Quantum
state

simulation,
quantum
channels

“Constrained”
tomography

(§ 2.3.2)

Verifying
quantum
processes

Quantum
process

tomography
(§ 2.4),

Gate-set
tomography

(§ 2.4)

Circuit
self-testing

(§ 2.1.2),
Process fidelity

estimation
(§ 2.1.4)

Quantum
circuit

simulation,
noise models

Randomised
benchmarking

(§ 2.4)

Table 2.1: A taxonomy of classical and quantum verification techniques.

2.1 Verification of quantum states

While protocols that aim to completely characterise a quantum system, such as

tomography, are widely studied, they are not the only game in town when it comes

to verifying quantum systems. A verification procedure is only required to test

whether a system meets a certain specification, and that specification need not

require a full characterisation of the system. To be more concrete, let the “model”,

M, be the set of quantum states (or processes) that denotes all possible actualities

of the system. The specification, then, is just a map S : M→R to some domain R
that labels required properties, characteristics or parameters of the system. For

example, the specification might be that the system should satisfy a certain property

(e.g. “is an entangled state”, or “is a non-Clifford circuit”), in which case R= {0,1}, or

that it should have some set of p key parameters within an acceptable range of

values, in which case R⊆Rp. A verification protocol then is, given (possibly multiple

copies of) an element m ∈M, to estimate S(m). As such, there are broad families of

protocols that come under the umbrella of quantum system verification, but are not

tomographic in nature. We will explore a representative subset of these protocols in
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this section, and defer discussion of characterisation protocols until § 2.3.

2.1.1 Property testing

Quantum property testing [39, 163] refers to the instance when the domain R= {0,1};

i.e. for some subset of states Q ⊆M, the specification maps to 1 (and the property is

“true”) and for the complement Q̄, the specification maps to 0 (the property is “false”).

More generally, property testing makes use of a notion of “nearness” to having some

property; i.e. we have some metric over the model ∆ :M×M→ [0,1] such that:

• m ∈M is “δ-far” from having the property if ∆(m, q)> δ, for all q ∈Q;

• m ∈M is “δ-close” to having the property if ∆(m, q)≤ δ for at least one q ∈Q.

A verifier for a particular property, given (generally multiple copies of) a particular

m ∈M, must discriminate with high probability between the cases where m ∈Q (i.e.

m has the property) or m is δ-far from Q. The quality of the protocol is typically

gauged by the scaling of the number of copies needed to discriminate these cases as

a function of δ.

As an example, suppose the model is just a pair of quantum states {ρ0,ρ1}, and

the specification maps to a single bit that just labels the states: S : ρ0 7→ 0, S : ρ1 7→ 1

(i.e. the property to be tested is just the statement “the state is ρ1”). Then the verifier

for this system is just a quantum state discrimination protocol between the states ρ0

and ρ1 [47, 14]. This is the simplest example of the verification task that will be

the basis of Chapter 3; namely, the scenario where the property to be tested is just

whether a given quantum state from the model is equal to, or far from, some fixed

target state. It is straightforward to show (see § 3.2.1) that if the target state is pure,

then a number of copies n =O(1/ε) is both necessary and sufficient to test equality to

the target with high probability (where we remind the reader that ε is the infidelity of

the given state with the target state). In the case where the target state is pure, but

the set of measurements available to the verifier is restricted to Pauli measurements,

then the best known prior art regarding the number of required copies scales like

O(d/ε2), derived using either the verification protocol in [206] or in the direct fidelity

estimation protocol in [84] (indeed in the latter, the verifier does not only test whether

the output state is exactly equal to a known target state, but estimates the fidelity

to the target with precision ±ε). If the target state is mixed, and the verifier has

no restriction on the types of measurement that they can apply, then the scaling is

less favourable than the equivalent case for pure states; for a target ρ ∈D(Cd), the

number of copies scales like O(d/ε) [11]. Additionally, this scaling with d is unlikely

to be improved; in the particular case where ρ = 1/d, we have the tight bound that

Θ(d/ε2
T ) copies are required [173].

11



CHAPTER 2. VERIFICATION AND CHARACTERISATION OF QUANTUM
SYSTEMS: A SURVEY

There are many more properties of quantum states which may be desirable, and

are testable in this framework. For example, one may test whether a given state is

separable. If the model is restricted to the set of pure states, then separability is

testable with O(1/ε2
T ) copies [106] by applying the swap test to subsystems of two

copies of the given state [160]. However, if the model allows mixed states then

testing for separability is much harder. As a direct consequence of a result by

Childs, Harrow and Wocjan [50], it is shown in [163] that Ω(d2/ε2
T ) copies are needed

to test for separability, in general. On the other hand, testing whether a state is

pure is generally efficient for arbitrary states; the purity of a quantum state ρ is

given by P = tr(ρ2), and applying the swap test to a pair of copies of ρ accepts with

probability 1
2 (1+P). Therefore repeatedly applying the swap test to pairs of copies of

ρ is enough to estimate the purity. If ρ is εT -far from being pure, then the swap test

rejects with probability εT
2 , and so only O(1/εT ) copies are needed to test for purity.

One final property that we remark upon is the testing of whether a given state is a

stabilizer state, or far from one (see § 3.5 for the definition of a stabilizer state). If

the model consists of the set of stabilizer states over logd qubits, then the related

task of determining which stabilizer state has been given to the verifier requires

measuring Ω(logd) copies, by an appeal to Holevo’s theorem [116]. An algorithm by

Aaronson and Gottesman [3] gave a matching upper bound of O(logd) if collective

measurements on all n copies are allowed, and an upper bound of O(log2 d) for

single-copy measurements. An upper bound of O(logd) for two-copy measurements

was shown by Montanaro [162] (with an algorithm based on the swap test, of a

similar flavour to that used to test for separability for pure states). However, this

does not preclude the notion of a tester for stabilizer states that does not scale with

the number of qubits. An efficient tester for this problem was recently devised by

Gross, Nezami and Walter, requiring a number of copies O(1/ε) [95] (independent of

the number of qubits over which the stabilizer state is defined).

2.1.2 Self-testing

In most verification scenarios, we typically make some subset of the following

assumptions: (i) that the measurement devices faithfully perform the POVM we

expect; (ii) that we can reliably perform the same measurement across multiple

trials; (iii) Markovianity (i.e. that outcomes from the experiment do not depend on

previous trials); (iv) that the Hilbert space is of a fixed and known dimension; (v)

that classical analysis and post-processing is perfect (vi) that locality assumptions

about the device and measurements are satisfied. Self-testing is a field dedicated to

a family of verification protocols for testing equality to a target state that do away

with most of these assumptions. Specifically, self-testing protocols rely only on
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assumptions (iii) and (vi) (in other words, the assumptions that freely chosen

measurements are independent, and that no-signalling holds). The other

assumptions can be discarded.

The most well-known self-test is of the singlet, based on the

Clauser-Horne-Shimony-Holt (CHSH) inequality [61]1. While it is widely

understood that a CHSH test of the singlet (experimental imperfections aside)

saturates Tsirelson’s bound SCHSH = 2
p

2 [220], the converse is also true; namely:

Theorem 1 (Singlet self-testing, Paraphrased from [183, 33]). If the outcome of a

CHSH test yields SCHSH = 2
p

2, then not only was the experiment producing copies of

a Bell state (up to local isometries), but the applied measurements must have been of

the correct Pauli observables (up to local isometries).

Thus by carrying out a CHSH test and analysing correlation data alone, one can

verify both the generation of singlet states and the correct operation of a potentially

untrusted measurement apparatus. Historically, while this result was first being

considered in the context of state verification, Mayers and Yao published an

alternative self-test of the singlet that relied on different observables [154] (in

particular, that Alice and Bob claim to be able to measure three distinct observables,

rather than two). Interestingly, the correlations observed for the Mayers-Yao test

can only achieve SCHSH = p
2 + 1 < 2

p
2 [230] and so are not able to saturate

Tsirelson’s bound, implying that each test is distinct. In the case where each party

is able to choose from two measurement settings each with two outcomes, the full

set of self-tests for the singlet is known [230].

There is a rapidly growing class of states beyond the singlet for which self-tests

are known. Regarding bipartite states, it was previously known that any pure,

bipartite, partially-entangled state of two qubits can be self-tested by parties with

two settings and two outcomes [234], and for pairs of qutrits, both the

partially-entangled states that saturate the Collins-Gisin-Linden-Massar-Popescu

(CGLMP) inequality [67] can be self-tested [235], as can the maximally-entangled

state [196]. However, these results have been superseded by work by Coladangelo,

Goh and Scarani that demonstrate that, for any bipartite qudit state, there exists:

(i) correlations that self-test that state [65]; and (ii) a generalised CHSH game that

matches those correlations [64]. In the case of multi-copy verification, multiple

singlets can be self-tested both sequentially and in parallel [193, 158, 167].

Regarding states with more than two parties, it is known that all graph states can

be self-tested (by measuring their corresponding stabilizers) [155], as can the W

state [177, 233]. Additionally, it is shown in [214] that all Dicke states,

1Readers unfamiliar with the CHSH inequality can find a primer in [170, §2.6].
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partially-entangled GHZ states, and even all multipartite qudit states that admit a

Schmidt decomposition are self-testable.

A reasonable criticism of these results, in isolation, is that it is highly infeasible

to create even a singlet with perfect fidelity. However, we would hope that if we

recorded a Bell violation of SCHSH = 2
p

2−δ, say, that the output state also has some

high fidelity with the singlet. This notion of robustness in self-testing was initially

explored for the singlet by McKague [156]. Specifically, it is shown that achieving a

violation of SCHSH = 2
p

2−δ lower bounds the fidelity with the singlet as

F(ρ, |Φ+〉)≥ 1− 1
4

(
9
p

2δ−100 ·2 1
4δ

1
2 +60 ·2 3

8δ
3
4

)
. (2.1)

While this result is a step in the right direction, it does not provide practically useful

bounds on the fidelity; if δ = 10−4, say, then the fidelity is only lower bounded by

F(ρ, |Φ+〉) ≥ 0.2. Thankfully this bound was drastically improved, first to the bound

F & 1−1.1δ in [12, 235], and then to the bound F & 1−0.69δ [124]. Also, robustness

results exist for the W state, linear cluster states and the GHZ state [177, 124].

2.1.3 Bell tests

We have seen that, particularly in the case of two-qubit states, to verify the presence

of a certain state one might perform some kind of Bell test (possibly tailored to the

state of interest). We would now like to explore Bell tests in the context where: (i)

the measurement devices are trusted; and (ii) we only perform the test with a finite

number of copies of an output state. In a similar vein to the robustness arguments

above, one may ask: in this scenario, to what accuracy can a Bell parameter be

stated? And how does this accuracy in the Bell parameter translate into an accuracy

in, say, the fidelity of the state with the expected state? We will see, for two-qubit

states, that the outcome is broadly similar to the results we describe for tomography

in § 2.3.1 - that we need at least a number of copies O(1/ε2) in order to verify a

two-qubit state to within fidelity ±ε using a Bell test. For simplicity, we focus on a

CHSH test rather than another, more complicated non-local game.

To begin with, we will first give a relationship between the required number of

copies, n, and the mean squared error (MSE) between the observed output data from

the CHSH game, and their expectations given the output state. For a set of n

estimates X̃ i with expectations X i, the MSE is given by

∆2 := 1
n

∑
i

(X̃ i − X i)2. (2.2)

Then given a CHSH game carried out on n identical copies of a two-qubit state

with expected parameter SCHSH , we can relate n and the MSE. The following

theorem is from [212], § 4.3:
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Theorem 2 (Bell test MSE [212]). Given a CHSH game carried out on n identical

copies of a two-qubit state with expected Bell parameter SCHSH , to bound the MSE by

∆2 it is necessary for the verifier to measure a number of copies

n ≥ 16−|SCHSH |2
∆2 . (2.3)

The proof of this theorem is included in both [212] and Appendix A. It remains to

translate this copy complexity in terms of the MSE into a copy complexity in terms

of the fidelity of the output of the experiment with a target state. One subtlety

regarding the CHSH test is that Alice’s and Bob’s measurement settings must be

“calibrated” to the target state. So if, for example, they expect copies of the state

|Φ+〉 = 1p
2
(|00〉+ |11〉) and set up their measurement settings accordingly, then upon

receipt of copies of any other Bell state (say, |Ψ+〉 = 1p
2
(|01〉+ |10〉)), they will output

a Bell parameter SCHSH = 0 despite their input being maximally entangled. Thus

the verifier must have the ability to calibrate their choice of CHSH measurement

settings by local rotations in order to align with the target state. A corollary to this

is that, as any two-qubit state is locally equivalent to a state

|ψθ〉 = sinθ|00〉 + cosθ|11〉, for some θ, we can restrict to target states of this form

without loss of generality. Moreover, it is clear from Eq. 2.3 that the required

number of copies is minimised by maximising |SCHSH |, and so it is in the verifier’s

interest to calibrate the measurement settings to maximise the violation for a given

target |ψθ〉. In this instance, the MSE and the fidelity are then related by the

following:

Lemma 3. Consider a CHSH test carried out on n copies of an output state claimed

to be |ψθ〉 = sinθ|00〉+ cosθ|11〉, where we must use this test in order to discriminate

from a state σ such that F(|ψθ〉,σ)= 1−ε, 0≤ ε≤ 1
2 . Then the root MSE between these

two cases is given by

∆= |ε(Sθ−Sφ)−
√
ε(1−ε)S j| (2.4)

for ε-independent parameters Sθ, Sφ and S j that depend upon |ψθ〉, σ, and the choice

of calibration for the CHSH test. Thus there is a lower bound on the copy complexity:

n ≥ 16−S2
θ

ε2(Sθ−Sφ−S j)2 (2.5)

copies are necessary to verify that σ is within infidelity ε to the target state |ψθ〉 using

a CHSH test.

The proof of this statement is also included in Appendix A. The salient point is

that for fixed θ, the number of copies to distinguish a target state |ψ〉 from a state ε

away using a CHSH test scales like O(1/ε2), in analogy with the bounds for quantum

state tomography in § 2.3.1.
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2.1.4 Direct fidelity estimation

In contrast to the above, an example of a verification protocol that does not fit neatly

into the property testing framework is the direct fidelity estimation protocol in [84].

The name conveys most of the premise of this verification scenario: given multiple

copies of some state ρ, and the ability to apply Pauli measurements on individual

qubits, the verifier must estimate the fidelity with some pure target state |ψ〉 as

accurately as possible.

Let ρ ∈D(C2N
); we denote a particular N-fold tensor product of Pauli observables

as σi, for i = 1. . .4N . The goal of the verifier is to produce an estimate F̃ of the

true fidelity F = 〈ψ|ρ|ψ〉, up to accuracy ±ε. The protocol is randomised, and so

we can only claim to satisfy this accuracy condition with probability 1− δ. Given

these requirements, the direct fidelity estimation protocol is the following, where

parameters will be chosen depending on |ψ〉:

Protocol Direct fidelity estimation
1: for i = 1 to ` do
2: Randomly pick Pauli measurement setting σi with probability pi
3: for j = 1 to mi do
4: Measure σi for a copy of ρ and store outcome as ai j

5: Produce estimate X i = Ci
mi

∑mi
j=1 ai j

6: Output fidelity estimate X̃ = 1
`

∑`
i=1 X i.

Theorem 4 (Direct fidelity estimation [84]). Suppose the verifier makes the following

choices for the parameters `,mi,Ci and pi:

`= 8
ε2δ

; pi = |〈ψ|σi|ψ〉 |2
d

; mi = dδ
4| 〈ψ|σi|ψ〉 |2

log
4
δ

; Ci = 1
〈ψ|σi|ψ〉

. (2.6)

Then it is guaranteed that

Pr[|X̃ −F| ≥ ε]≤ δ. (2.7)

The proof of this theorem is in [84] and is included in Appendix A. It is worth

remarking that, unlike tomography, the necessary number of measurement settings is

independent of d; it is just `= 8
ε2δ

. However, the necessary number of measurements

does depend on d; it is bounded by∑
i
E(mi)≤ 1+ 8

ε2δ
+ 8d
ε2 log

4
δ

. (2.8)

While this dependence is exponential in the number of qubits, it is still polynomially

better than the scaling that is inherent to quantum state tomography. It is also worth

mentioning that, for many states of interest in quantum information, the scaling of

this protocol may be markedly better than this worst-case bound:
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Lemma 5. Suppose it is guaranteed that, for a fixed target state |ψ〉 and for any choice

of Pauli σi, either: (a) 〈ψ|σi|ψ〉 = 0, or (b) | 〈ψ|σi|ψ〉 | ≥α, for some threshold α. Then

∑
i
E(mi)≤O

(
1

α2ε2 log
1
δ

)
. (2.9)

In particular, for stabilizer states we have that α= 1, and so the copy complexity

does not grow with d. For W states, it can be shown that α= 1
logd , and so the scaling

is quadratic in the number of qubits.

2.1.5 Shadow tomography

A verification task that sits close to the boundary between verification and

characterisation is shadow tomography [2]. In this instance, the specification is not

to output a single bit, as in property testing, or a single real number, as in fidelity

estimation, but to output a list of real numbers, {b1,b2 . . .bm}. Given (multiple copies

of) a state ρ ∈D(Cd) and a list of m observables E1 . . .Em, the parameter bi should

give a close approximation to the expectation value tr(E iρ), for all i, using as few

copies of ρ as possible. This task is weaker than full tomography; the set {E i} need

not be informationally complete (i.e. it may not be possible to output a complete

classical description of a state that approximates ρ using the set of bi ’s alone). A

corollary is that, if the verifier were to carry out full tomography on ρ, they could

trivially output a set {b1 . . .bm}; using the bounds for sample-optimal tomography in

§ 2.3.1, it is sufficient in this instance to measure O
(
d2)

copies. On the other hand,

if the verifier were to just apply the measurement E i to copies of ρ, they could

output the full list of approximations using O(m) copies. The result in [2] notably

derives an upper bound in copy complexity that is a significant improvement over

both of these naïve approaches.

Theorem 6 (Shadow tomography [2]). Given n copies of some d-dimensional mixed

state, ρ⊗n, and a description of two-outcome observables E i, i = 1. . .m, there is an

explicit protocol that outputs a list {b1 . . .bm} such that, with probability 1−δ,

|bi − tr(E iρ)| ≤ ε, ∀i. (2.10)

Moreover, we have a copy complexity

n = Õ
(

1
ε5 logm logd log

1
δ

)
, (2.11)

where the Õ notation hides logarithmic factors of ε, and doubly logarithmic factors of

d and m.
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The spirit of the approach is to apply a form of “gradient descent”; we have some

hypothesis state ρt, initially at ρ0 ∝ 1, and we seek to update by descending along

the direction that represents the worst-case for the verifier; i.e. we look for and

measure observables E i where |tr(E iρt)− tr(E iρ)| is big. Finding informative E i ’s

for the verifier relies on the gentle search procedure, based on a protocol by Harrow,

Lin and Montanaro [105]; this protocol decides whether an observable from the set

accepts with high probability, or that all observables accept with low probability,

given the promise that one or the other is true.

2.1.6 Verification and hypothesis testing

Ultimately, the procedure for verifying the existence of a particular quantum state

|ψ〉 is nothing more than a binary hypothesis test; we perform measurements on

multiple copies of the output state, collect data and construct statistics, then on the

basis of these statistics we either accept a null hypothesis H0 that the output state

was indeed |ψ〉, or we reject in favour of an alternative hypothesis H1, that the output

state is far from |ψ〉.
In a binary hypothesis test between hypotheses H0 and H1, there are two ways

in which we can err, commonly called “Type I” and “Type II” errors. These are,

respectively,

Type I : Pr[Guess H1|H0] :=α, (2.12)

Type II : Pr[Guess H0|H1] :=β. (2.13)

In general, in designing an effective hypothesis test there will be a trade-off between

the relative magnitude of these types of error; they cannot be arbitrarily decreased

simultaneously. It is typically down to the experiment designer to determine in

which ratio one can tolerate Type I versus Type II errors. In symmetric hypothesis

tests, the Type I and Type II errors are treated equally, and the designer seeks to

minimise them both at the same rate. However, in many scenarios these errors are

valued differently. In the context of verifying quantum states, for example,

misattributing the state as |ψ〉 when the output is actually far from |ψ〉 is likely to

result in the failure of the entire quantum computation, whereas asserting that the

state is far from |ψ〉 when the state is actually |ψ〉 just leads to recalibration or

further verification. It can be reasonably argued, therefore, that we should seek to

minimise the former as much as possible, even at the potential expense of

marginally increasing the latter. This is the remit of asymmetric hypothesis tests,

wherein the goal is to maximise the rate at which one of these errors decreases (in

this case, the Type II error) for increasing trials, given a fixed, tolerable upper

bound on the other (in this case, the Type I error).
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The study of both symmetric and asymmetric hypothesis tests in quantum

information is well-established (see [9] for a comprehensive review). In the context

of symmetric tests we wish to minimise a (potentially weighted) sum of the Type I

and Type II errors; asymptotically, this sum decays exponentially with the number

of trials. In the case of discriminating two discrete, classical probability

distributions, the optimal exponent is given by the Chernoff information [49]:

Theorem 7 (Chernoff information [49]). Let X1 . . . Xn be drawn iid from either p

(hypothesis H0) with probability πp, or q (hypothesis H1) with probability πq; then

the probability of error is Perr = απp +βπq. This decreases exponentially with the

number of trials: Perr ∼ exp{−nC(p, q)}, and the optimal error exponent is given by

ξC(p, q) :=max
s

C(p, q)=− log

[
inf

0≤s≤1

∑
i

p(i)1−sq(i)s

]
. (2.14)

In the quantum case of discriminating n copies of two finite-dimensional density

matrices ρ⊗n and σ⊗n, there is a remarkably similar equation that governs the

optimal exponent, naturally called the quantum Chernoff information [8, 171]:

Theorem 8 (Quantum Chernoff information [8, 171]). Let ρ⊗n and σ⊗n be two density

matrices of finite but unknown dimension, given to a verifier with prior probabilities

πρ and πσ. Then the Helstrom bound for the probability of error is

Perr = 1
2

(
1−‖πρρ⊗n −πσσ⊗n‖1

)
. (2.15)

This probability of error decreases exponentially with the number of trials, Perr ∼
exp{−nQ(ρ,σ)}, and the optimal error exponent is given by

ξQ(ρ,σ) :=max
s

Q(ρ,σ)=− log
[

inf
0≤s≤1

tr(ρ1−sσs)
]

. (2.16)

In the asymmetric case, the statement of optimality of classical hypothesis tests

is given by the Chernoff-Stein lemma, which is the jumping-off point for the results

in Chapter 3 and will be our focus in § 3.2.2 (we refer the reader there for a full

statement of the lemma). This lemma states that the probability of error also decays

exponentially, with optimal exponent in the classical case given by the

relative entropy (also known as the Kullback-Leibler divergence), denoted D(·‖·). For

the case of discrete probability distributions p and q, it is defined as

D(p‖q)=∑
i

p(i) log
p(i)
q(i)

. (2.17)

There is a quantum generalisation of the relative entropy, naturally called the

quantum relative entropy [113]:

DQ(ρ‖σ)= tr[ρ(logρ− logσ)]. (2.18)
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The Chernoff-Stein lemma has also been extended to the quantum case; first by Hiai

and Petz [113], who showed that the quantum relative entropy upper bounds the

optimal exponent for an asymmetric hypothesis test between two states, and then by

Ogawa and Nagaoka [176], who showed that this bound is tight.

2.2 Verification of quantum processes

We now briefly highlight analogous verification procedures for quantum processes as

those discussed for quantum states above.

Property testing of quantum processes is a little more subtle than for states, as

we have more freedom to define plausible verifiers. For example, in testing a unitary

U , we must consider the available input states and measurement settings, as well

as whether the verifier has access to derivative gates such as U−1 or c-U (the

“controlled” form of U). On the other hand some protocols for property testing

processes follow neatly from, and inherit the copy complexity of, their counterparts

for property testing quantum states due to the Choi-Jamiołkowski isomorphism [53,

120]. In particular, testing whether a unitary is a particular target unitary (up to a

global phase) follows directly from the equivalent test for states, and requires O(1/ε)

uses of the unitary. The test for locality of the unitary (i.e. that it is of the form

U = ⊗
i Ui) is derived directly from the swap test for separability of states [160].

Membership of the Clifford group follows from the test for inclusion in the set of

stabilizer states in [95]. The most efficient (and provably optimal) algorithm for

learning a particular Clifford operation, given access to the operation and its

inverse, has a copy complexity of O(1/ε), independent of the size of the Hilbert space

over which the operation acts [224].

Results are also known about the ability to self-test quantum gates and circuits,

rather than quantum states. The earliest result in this setting is due to van Dam et

al. [71].2 The premise is analogous in spirit to deductive verification: given a

quantum channel Λ, we must construct a set of necessary conditions based on

outcome probabilities that verify whether Λ is the target unitary. van Dam et al.

derive a set of necessary conditions for a universal gate set. Moreover, this scheme is

shown to be robust; that is, if the conditions are close to being satisfied then the

channel is close to Λ. A protocol that is closer in spirit to true self-testing was later

developed by Magniez, Mayers, Mosca and Ollivier [148]. The protocol only makes

2While this work historically comes under the umbrella of self-testing, it assumes a verifier with
more control than just access to classical data corresponding to untrusted measurement outcomes; the
verifier must also have the ability to both prepare probe states in the computational basis, measure
in the computational basis, assume the system is of fixed and known dimension, and apply the given
operator as many times as they like. As such, it has more in common with the fidelity estimation
protocol in § 2.1.4 than the self-testing protocols in § 2.1.2.
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the assumptions that are necessary for self-testing, plus the additional assumption

that the circuits only operate on states with real-valued amplitudes (for

mathematical expediency). The crux of the proposal is to generate Bell pairs and to

distribute each qubit to one of two copies of the circuit; then, by running

experiments with different parts of the circuit removed and performing a self-test on

the states at the output, to restrict the actions of an adversarial device. They are

also able to demonstrate robustness in this setting.

There is also an analogous notion of direct fidelity estimation for quantum

processes [115, 192, 153]. In these scenarios, we assume that the verifier has access

to some black-box unitary that is purported to be U , but actually operates with the

channel Λ. The verifier is able to generate copies of some input states to Λ, and then

measure at the output. The goal is to estimate some fidelity between Λ and U .

Research in this direction has aimed at minimising the number of different probe

states that the verifier must prepare to produce tight bounds on the process fidelity.

The minimum ensemble size was recently shown to be of size d [153]. However, to

date there is not a clear analysis that explores optimality in the sense of copy

complexity, and the nature of optimal protocols in this setting.

2.3 Characterisation of quantum states

Characterisation of quantum systems is probably the most well-studied verification

task in quantum information. In this instance, we have a specification that is a

full mathematical description of the system in question (be it a quantum state or

process). The goal of the verifier is to probe the system, to provide an estimate of

every parameter describing the system with respect to the model, and to estimate

whether it is close to the specification, in some sense.

We will focus on the characterisation of quantum states in this section; we defer

discussion of quantum processes until § 2.4.

2.3.1 Quantum state tomography

In the context of quantum states, characterisation tasks are known as quantum

state tomography. Characterisation of quantum states is typically a time-consuming

and computationally difficult process. For example, tomographic reconstruction of a

state of 8 ions required taking ∼ 650,000 measurements over 10 hours, and a

statistical analysis that took far longer [102]; verification of a few-qubit photonic

state is similarly challenging [42, 132]. This is also the case in tomography of

continuous-variable systems [145, 15, 7]. One may instead resort to non-

tomographic methods to characterise the output state of an experiment, but such
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methods typically either: (a) assume that the output state is within some special

family of states, for example in compressed sensing [85, 96] or matrix product state

tomography [69]; or (b) extract only partial information about the state, such as

when estimating entanglement witnesses [217, 218]. We will return to these

“constrained” tomography protocols in § 2.3.2. Unlike some of the verification

protocols discussed above, in this setting it is common to make quite strong

assumptions about the ability of the verifier. In particular, we make all of the same

assumptions listed at the start of § 2.1.2.

Most tomographic protocols assume single-copy measurements only, where each

copy is consumed or destroyed when the measurement is completed (this is in

contrast with the “sample-optimal” tomographic schemes that we discuss in § 2.3.3).

For a single copy of ρ, we make a choice of POVM indexed by k, Πk. We let this

POVM have bk potential outcomes, indexed by b = 1. . .bk; the POVM elements of Πk

are labelled Πb
k such that

∑bk
b=1Π

b
k = 1. Then the Born rule for measurement

outcomes is Pr(b|Πk,ρ) = tr(Πb
kρ). If we have n total copies of ρ, denote nk as the

number of copies over which Πk is measured. Let ckb be the number of times that

outcome b is recorded when measuring Πk on nk copies; the relative frequency of

this outcome for this POVM is then denoted fkb := ckb/nk. It is clear that

E( fkb) = tr(Πb
kρ), but it is unlikely that the actual value of fkb satisfies this equality

for a finite number of samples.

Suppose we wish to characterise the state up to trace distance O(εT ); then we

note an argument first pointed out in [85]: characterising up to O(εT /
p

d) in

Frobenius norm guarantees that the trace distance is at most O(εT ). To characterise

an arbitrary state ρ ∈ D(Cd), one has to write down d2 −1 real parameters and so

Ω(d2) measurement settings are necessary. Then, to attain accuracy O(εT /
p

d) in

Frobenius norm by linear inversion tomography (as seen below), it suffices to

estimate the expectation value for each setting up to additive error O(εT /d), which

requires O(d2/ε2
T ) copies per setting, by Hoeffding’s inequality [114]. Therefore for

the non-adaptive estimators we introduce below, n = O(d4/ε2
T ) copies are needed to

guarantee that the estimate is within trace distance O(εT ) of the true state.

The simplest tomographic estimate that one could consider is known as linear

inversion. Suppose ρ has some decomposition

ρ = 1

d
+ 1

2
r ·σ, (2.19)

where the vector σ is a list of d2 −1 Hermitian, traceless and orthogonal matrices3

and the elements of r are a set of real parameters specified by r i = tr(ρσi). Then

3Here we have used the notation σ to indicate Pauli matrices, but any informationally-complete set
of Hermitian and traceless matrices will do.
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POVM elements can also be decomposed in this fashion:

Πb
k = s0

kb1+skb ·σ, (2.20)

where s0
kb = tr(Πb

k)/d and si
kb = tr(Πb

kσi)/2. Then outcome probabilities can be

rewritten

Pr(b|Πk,ρ)= tr(Πb
kρ)= s0

bk +sbk ·r. (2.21)

A linear inversion estimator simply equates this expression with the observed

relative frequencies:

s0
bk +sbk ·r= fbk, ∀b,k. (2.22)

By vectorising, solving this is equivalent to solving the corresponding matrix

equation for r:

Sr= f. (2.23)

There is no reason to expect the dimension of r to be the same as the dimension of f,
and so S is not square; in this instance one can use the Moore-Penrose pseudoinverse

to output

r= (S†S)−1S†f. (2.24)

A linear inversion estimate ρL is constructed by evaluating this expression and

plugging the resultant r into Eq. 2.19. This method has some useful operational

properties. Firstly, it is comparatively transparent what must be calculated in order

for ρL to be produced. Secondly, for quantities derived from ρL, such as the fidelity

with a target or an entanglement witness, it tends to produce estimates that are

significantly less biased than common alternatives [201]. However, it has a

deficiency: there is no guarantee that ρL corresponds to a physical density matrix.

In practice, linear inversion estimates commonly report negative eigenvalues [72].

The most common and widely-adopted alternative is maximum likelihood

tomography [117]. The likelihood function L(ρ) evaluates the probability of

observing the full data set c = {ckb} given a particular ρ:

L(ρ) :=Pr(c|ρ)=∏
k,b

tr(Πkbρ)ckb =∏
k,b

tr(Πkbρ) fkb/n. (2.25)

It is more practical to consider the log-likelihood:

logL(ρ)= 1
n

∑
fkb logtr(Πkbρ). (2.26)

The maximum-likelihood estimate ρMLE is then given by

ρMLE =argmax
ρ

logL(ρ)= argmax
ρ

1
n

∑
fkb logtr(Πkbρ),

subject to ρ ≥ 0, trρ = 1. (2.27)
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The advantage of this estimate over ρL is that the constraints guarantee that a

physical density matrix is produced (i.e. one with non-negative eigenvalues). On the

other hand, calculating ρMLE is incredibly expensive computationally [102, 202].

Additionally, ρMLE is very likely to be rank-deficient; that is, to have some set of

eigenvalues that vanish entirely [25]. While this is physically allowable, it is

statistically problematic; the only error bars consistent with this point estimate are

ones that vanish entirely. Hence if |u〉 is an eigenstate of ρMLE with zero eigenvalue,

then we must conclude that measuring tr(|u〉〈u|ρ) will yield outcome zero, with

complete confidence; however, this is preposterous given that we have taken a finite

amount of data to construct ρMLE. The issue is that, in some sense, maximum

likelihood estimation takes unphysical estimates, i.e. estimates outside the space of

valid density matrices, and projects them onto the closest physical state - which

invariably is a state on the boundary [25]. These boundary states are typically

rank-deficient. This could also be argued to be the source of bias in MLE, over linear

inversion: artificially increasing negative eigenvalues so that the state becomes

positive means that large eigenvalues must be decreased if the trace is to remain

fixed, and these eigenvalues contribute the most to quantities like the fidelity [25].

To attempt to remedy these issues, one may resort to Bayesian techniques4 [25,

118]. Using Bayes’ Rule, we have a posterior distribution on ρ given data c as

Pr(ρ|c)dρ = Pr(c|ρ)Pr(ρ)dρ
Pr(c)

= L(ρ)Pr(ρ)dρ
Pr(c)

, (2.28)

where the prior distribution π(ρ)=Pr(ρ)dρ. The Bayesian mean estimate is given by

ρBME(c)= Eρ[ρ|c]=
∫

dρρPr(ρ|c). (2.29)

This estimate has some advantageous features over its frequentist counterparts: (i)

it does not lead to rank-deficient estimates; (ii) it yields well-defined and meaningful

confidence regions around the point estimate; (iii) the estimator is optimal with

respect to a family of metrics called operational divergences [25, 93]. On the other

hand, it is: (i) even more computationally taxing to compute than ρMLE; (ii) it is not

immediately obvious how to pick an appropriate prior (that is, one that is at least

somewhat informative, without overstating the confidence in the estimate before the

experiment begins). In general, there is no clear choice of estimator in quantum

state tomography; none are without flaws. A verifier must make an informed and

transparent choice based on the context of the experiment.

In contrast to the estimators above, it may also be beneficial to the verifier to

consider adaptive tomographic protocols; that is, protocols that allow a verifier to
4It is worth noting that MLE can be seen as a particular instance of a Bayesian estimator. If we

specify a uniform prior over all states ρ, then the MLE is equivalent to the maximum a posteriori
estimate - the modal point of the posterior distribution.
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modify the choice of future measurement settings based on past measurement data.

The advantage here is that, in principle, it takes far fewer copies to produce an

estimate to within an infidelity ε (O(1/ε) rather than O(1/ε2) for conventional

tomography) [149, 209, 210]. However, adaptive protocols are difficult to treat

analytically and the evidence for this advantage is purely numerical. While this

advantage in copy complexity may look promising, it may be the case that the

computational cost of computing the next measurement setting is particularly

taxing, given the data. It is not implausible that this added time penalty incurred by

adaptively computing measurement settings negates any advantage in copy

complexity, in real life experiments.

2.3.2 “Constrained” tomography

The most common approach to negate the impact of the exponential scaling of the

copy complexity with the number of qubits is to constrain the state ρ to lie in a

subset M ⊂D(Cd). It is debatable where to place such methods in the taxonomy of

verification methods in Table 2.1. On the one hand, if we have a strict guarantee that

the tested state cannot stray outside the subset M, then “constrained” tomography

of this type can be thought of as model checking in the same sense as conventional

tomography, but where the model only contains states in M. On the other hand,

if there is any non-zero probability for ρ to stray outside M then the model may

contain all states in D(Cd) and we are in the realm of testing, where we have no strict

guarantee that the protocol that we implement is sufficient to faithfully characterise

the state. We choose the latter, as (a) guarantees of this type are implausible in

practice and (b) most protocols we consider below explicitly treat cases where ρ is

close to, but not strictly an element of, M [96, 85]. We will now highlight a pair of

notable protocols of this type.

We have already mentioned a scenario of this type; when M is the set of stabilizer

states of logd qubits. As noted in § 2.1.1, it is intuitive from Holevo’s theorem that we

expect, given a stabilizer state of logd qubits, to consume at least Ω(logd) copies to

identify it. Protocols by Aaronson and Gottesman [3] and Montanaro [162] show that

this bound is tight; that O(logd) copies are sufficient. The protocol consists of taking

two copies of the unknown stabilizer state, and performing Bell basis measurements

on pairs of corresponding qubits.

One can also make some headway in alleviating the ailments of tomography by

assuming that ρ is low rank; i.e. that it has at most k ¿ d non-zero eigenvalues.

Protocols under this assumption are commonly called quantum compressed

sensing [96, 85]. The nature of the protocols in [96, 85] are very similar to the direct

fidelity estimation protocol in § 2.1.4. Given a copy of ρ, the verifier randomly picks

25



CHAPTER 2. VERIFICATION AND CHARACTERISATION OF QUANTUM
SYSTEMS: A SURVEY

one of the d2 Pauli settings and measures. To reconstruct the state to within trace

distance εT , it is shown in [96, 85] that it is sufficient for the verifier to randomly

choose O(kd logd) settings from the d2 that are possible, and to measure each

setting on O(kd) copies. Thus the protocol has a copy complexity of O(k2d2 logd).

Moreover, for protocols that use single-copy Pauli measurements, this bound is

almost tight; it is necessary to measure Ω(k2d2/ logd) copies to guarantee a

reconstruction up to constant trace distance. While the most fitting scenario for

compressed sensing protocols are when ρ is guaranteed to be of low rank, it may

also be useful when the available verification time is very short. Short verification

times might mean that a conventional tomographic protocol does not have time to

measure every setting from an informationally-complete set, or to only measure

them on a few copies such that the expectation estimates are very poor. In this

instance, it might be more efficient to precisely characterise a smaller subset of

settings, and to output a low rank estimate by compressed sensing. [85] gives

compelling numerical evidence that compressed sensing estimates may handily

outperform maximum-likelihood estimation in this setting.

Schemes with reduced copy complexity also exist for other classes of states, such

as matrix product states [69] and permutationally invariant states [219].

2.3.3 Sample-optimal tomography

One may ask whether the protocols in § 2.3.1 and § 2.3.2 represent the ultimate

efficiency in copy complexity with respect to state characterisation, even with

verifiers capable of carrying out more general measurements than, for example,

Pauli measurements. The copy complexity of “sample-optimal” tomography schemes

has been studied by Haah, Harrow, Ji, Wu and Yu [100], and by O’Donnell and

Wright [173, 174, 175]. In this setting one may consider protocols that allow

collective measurements, that is, any valid measurement that acts on ρ⊗n; or

single-copy measurements, where the verifier is only given access to a single ρ at a

time (that is consumed on measurement). A summary of both necessary and

sufficient copy complexities for these scenarios are shown in Table 2.2.

It is noteworthy that most of the bounds in Table 2.2 are quite tight; in general,

the poor scaling with d in all of the above tomographic settings are both explicitly

calculable and completely unavoidable. Conversely, while a verifier with the ability

to apply arbitrary collective measurements seems quite powerful, it only gives a

quadratic advantage in d over a verifier that is constrained to only measure Paulis

on single copies (for arbitrary states).
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Meas. type ≥/≤ Pure states Rank-k states Arb. states

Collective
≥ Ω

(
d
ε

)
[108] Ω

(
kd

ε2
T log d

kεT

)
[100] Ω

(
d2

ε2
T

)
[100]

≤ O
(

d
ε

)
[108]

O
(

kd
ε

log d
ε

)
[100]

O
(

kd
ε2

T

)
[173]

O
(

kd
ε

)
[175]

O
(

d2

ε
log d

ε

)
[100]

O
(

d2

ε2
T

)
[173]

O
(

d3

ε

)
[175]

Single-copy
≥ Ω

(
d
ε2 log 1

ε

)
[100] Ω

(
k2d
ε2 log 1

ε

)
[100] Ω

(
d3

ε2
T

)
[100]

≤ O
(

d
ε2

T

)
[131, 96, 85] O

(
k2d
ε2

T

)
[131, 96, 85] O

(
d3

ε2
T

)
[131, 96, 85]

Pauli
≥ Ω

(
d2

ε2
T logd

)
[85] Ω

(
k2d2

ε2
T logd

)
[85] Ω

(
d4

ε2
T logd

)
[85]

≤ O
(

d2

ε2
T

logd
)

[96, 85] O
(

k2d2

ε2
T

logd
)

[96, 85] O
(

d4

ε2
T

)
[96, 85]

Table 2.2: A breakdown of known upper and lower bounds in copy complexity for
sample-optimal tomography. “≥” and “≤” respectively denote necessary (lower) and
sufficient (upper) bounds in copy complexity.5

2.3.4 Confidence estimates in quantum state tomography

While constructing a point estimate of a state ρ alone given some measurement data

is a well-motivated request, there is no guarantee that the point estimate is exactly

correct given a finite data set, nor any a priori notion of how “good” this estimate

is. For the point estimate to be meaningful, some generalised notion of “error bars”

are required to quantify the accuracy of the estimate. We now outline established

approaches to this problem in quantum state tomography.

The results we have discussed on compressed sensing [96, 85], direct fidelity

estimation [84] and sample-optimal tomography [100, 173, 175] give a notion of an

error bar in the form of a certificate: after measuring a fixed number of copies of the

state, there is a guarantee that the point estimate is within some fixed distance of

the true output state (although only the direct fidelity estimation protocol gives this

certificate precisely, including constant factors). Such certificates are relatively

simple to state and to computationally produce, and protocols of this type will be the

focus in Chapters 3 and 4. On the other hand, error bars defined in this way have

some immediate drawbacks [26]: (i) the “error ball” drawn around the estimate may

contain nonphysical states (which is increasingly likely if the point estimate is close

to the boundary of allowable states, see § 4.3); (ii) the ball must be centred on the

estimate; (iii) the ball is of a fixed (ellipsoidal) shape. Error balls drawn this way

could be both unrepresentative of the data and suboptimal in terms of size and

5The notation “O” and “Ω” can be thought of as asymptotic, approximate versions of ≤ and ≥,
respectively. In particular, for two functions f (n) and g(n), f (n) = O(g(n)) if there is a positive real
number a and integer n0 such that, for all n ≥ n0, f (n) ≤ ag(n). An analogous definition holds for Ω,
where instead f (n)≥ ag(n).
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shape of confidence region. For non-Bayesian protocols such as maximum likelihood

estimators, there are alternatives; for example, the confidence regions defined by

Blume-Kohout [26] and Christandl and Renner [54]. While such estimates are

well-defined and statistically rigorous, they also have drawbacks: (i) they don’t

produce a reportable point estimate; (ii) there is no analytically tractable recipe to

extract a confidence region at a given confidence, for an arbitrary data set; (iii)

numerical methods to extract the confidence region are computationally expensive.

However, simpler numerical approximations have also been studied [79].

In the Bayesian setting, this notion of “generalised error bars” is conceptually

clearer; the verifier has some posterior distribution given the measurement data,

and can use this to construct a Bayesian credible region that matches the frequentist

notion of a confidence interval [81]. In particular, let the measured data be c and the

state ρ. For a region R, let 1R(ρ) be the indicator function for the region R; that is,

1R(ρ)= 1 if ρ ∈ R and is zero otherwise. Then a region R is α-credible if

Pr[ρ ∈ R|c]= E[1R(ρ)]≥ 1−α. (2.30)

While the notion is simple to state, finding credible regions has the same drawbacks

as generating point estimates in Bayesian tomography: it is highly dependent on

the choice of prior, and is computationally difficult to produce. However, progress

has been made in both of these directions; both in the sense of developing insightful

priors [91] and in developing techniques [92] and off-the-shelf software [93] that make

Bayesian tomography more tractable.

Finally, we would like to highlight one particular approach to generating

confidence intervals in quantum state tomography, as it will feature in our

discussions on state verification in Chapter 3 and fidelity estimation in Chapter 4.

This approach is called precision-guaranteed tomography [213]. It is a protocol that

derives error bars in the “certificate” sense described above, by certifying that the

output state and the target state must lie within some distance defined by the

measurement data. The point estimate in this protocol is derived slightly differently

to the MLE above, in that physicality of the density matrix is enforced in two stages;

first, that the estimate must be Hermitian and have unit trace, and then that it is

positive. Such an estimate is called an extended norm minimisation estimate, or

ρENM . Specifically,

ρENM = argmin
ρ

ρ≥0

‖ρ−ρ′‖2; (2.31)

where

ρ′ = argmin
σ

tr(σ)=1,σ†=σ
‖r(σ)− f‖2, (2.32)

using the notation from Eq. 2.23. Given this estimator, the following holds:
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Theorem 9 (Precision-guaranteed tomography [213]). Consider a tomographic

protocol that takes n copies of a target state ρ ∈D(Cd) and applies an informationally

complete set of measurement settings {Πb
k}. Let ∆(·, ·) be a loss function between states

(such as the infidelity). Then

Pr
[
∆(ρENM ,ρ)> ε]≤ 2

d2−1∑
α=1

exp
(
− b

cα
ε2n

)
, (2.33)

where

b =


8

d2−1 if ∆ is the Hilbert-Schmidt distance
16

d(d2−1) if ∆ is the trace distance
4

d(d2−1) if ∆ is the infidelity

(2.34)

and cα is a constant dependent on the choice of measurement settings.

This result is enough, for example, to give a certification of the fidelity of the

output state from an experiment to a target state, given a state tomography protocol

constructed from Pauli measurements in the conventional way (including constant

factors). We will make use of this result in Chapter 3.

2.4 Characterisation of quantum processes

The earliest example of a protocol for process characterisation is quantum process

tomography (QPT) [55, 185]. QPT and state tomography are intimately related.

Given a verifier capable of preparing perfect input states to a process Λ and to

collect measurement data by measuring with perfect precision, analysis by QPT

yields an analogous expression to that for state tomography in Eq. 2.21, and the

verifier solves for Λ in an identical way (e.g., by linear inversion or MLE). Process

tomography, then, inherits all of the same assumptions and drawbacks as state

tomography. Two are particularly acute: (i) the channel is described by O(d4) real

parameters, and so an analogous argument to that for quantum states would imply

that, if the verifier is restricted to single-copy, two-outcome measurements, then

O(d4) total measurement settings and O(d6) total copies are necessary for

verification; (ii) systematic errors in state preparation or measurement are

completely undetectable, which fundamentally undermines the quality of the

estimate [194]. On the other hand, random errors, such as adding Gaussian noise to

the measurement outcomes, are correctable with low overhead [208]. Additionally,

heuristics have been studied to deal with the problem of systematic errors, under

various assumptions about the process and the verifier [75, 30].

Gate set tomography (GST) [94, 159, 28, 27] is a direct attempt to mitigate

drawback (ii), by explicitly parameterising systematic errors and by characterising
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them alongside the process itself. Gate set tomography requires application of long

strings of fundamental gate sequences, or “germs”, in order to amplify and

characterise coherent errors. Consequently, estimates of gate parameters are highly

nonlinear functions of the measurement data, and extracting them with a high

degree of accuracy is computationally challenging. GST does not mitigate the copy

complexity of process tomography; GST of two trapped ion qubits in [169] required

trials of 71 germs and 160 “fiducial” coherent errors, and a statistical analysis that

required 12 hours of numerical optimisation and tens of gigabytes of memory.

Randomised benchmarking (RB) [76, 129, 146, 70] attempts to produce a coarser

characterisation by testing; i.e. to output a quantity that is indicative, but not

conclusive, about the operation of the process. The premise is to perform sequences

of Clifford gates, chosen at random, that under perfect operation would leave the

input state alone; when the operation is imperfect, the probability of projecting onto

the input state at the output decays exponentially with the length of the sequence.

One can then back out a single error parameter, the “RB number”, as the exponent.

Both the cost of post-processing [147] and total number of experiments [111] is, in

principle, independent of the number of qubits; however, most techniques incur a

costly overhead due to circuit compilation. The state of the art at time of writing is

RB of five qubits [188]. It is also unclear what operational meaning to ascribe to the

RB number, particularly in the case of gate dependent errors [187].

2.5 Comparison of verification strategies

To summarise, there is no panacea when verifying quantum states. An ideal

verification protocol would: (i) maximise the information produced about the output

state (for example, produce a full characterisation); (ii) make a minimal set of

assumptions about the form of the output state; (iii) make a minimal set of

assumptions about the abilities of the verifier; (iv) give the verifier the ability to

make precise statements about statistical confidence given a finite number of trials;

and (v) be efficient in terms of copy complexity. Regarding characterisation protocols

that satisfy (i), practical tomography protocols only require simple measurements

and formulaic post-processing but are prohibitively inefficient. Any saving in

efficiency does not come for free; the verifier must either make some assumptions

about the output state, as in constrained tomography, or empower the verifier to

perform more complicated (and often physically implausible) measurements, as in

sample-optimal tomography. Relaxing requirement (i), for example by relying on

property testing protocols or direct fidelity estimation, is a plausible path to gains in

efficiency. However, these protocols may still either rely on a verifier with access to

non-local or collective measurements, or are prohibitively inefficient in practice.
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To this end, we will seek out verification protocols in Chapter 3 that eschew a full

characterisation of the output state, but are both efficient in copy complexity and rely

on measurements that are typically available to a reasonable verifier. In Table 2.3

below, we give a comparison of previously established strategies for verifying a state

ρ ∈D(C2N
) and the protocol in Chapter 3.

Strategy Copy
complexity States Local Single-

copy
Non-

adapt.
“Pauli”

tomography
(§ 2.3.1)

O
(

24N

ε2
T

log 1
δ

)
Arb. 3 3 3

Single-copy
tomography

(§ 2.3.3)
O

(
23N

ε2
T

log 1
δ

)
Arb. 7 3 3

Sample-optimal
tomography

(§ 2.3.3)
O

(
22N

ε2
T

log 1
δ

)
Arb. 7 7 3

Shadow
tomography

(§ 2.1.5)
Õ

(
N
ε5 log 1

δ

)
Arb. 7 7 7

Compressed
sensing
(§ 2.3.2)

O
(

22N

ε2
T

log 1
δ

)
Low rank 3 3 3

Direct fidelity
estimation

(§ 2.1.5)
O

(
2N

ε2 log 1
δ

)
Pure 3 3 3

Quantum state
certification

(§ 2.1.1)
O

(
2N

ε
log 1

δ

)
Arb. 7 7 3

Equality testing
(§ 2.1.1)

O
(1
ε

log 1
δ

)
Pure 7 3 3

State
verification
(Chapter 3)

O
(1
ε

log 1
δ

) Stabil.
(& 2-qubit)

3 3 3

Table 2.3: A comparison of a selection of state verification strategies discussed in
this chapter, and their copy complexities. “Arb.” denotes arbitrary mixed states
of N qubits, and “stabil.” denotes stabilizer states of N qubits. For direct fidelity
estimation, the target state is required to be pure but the tested state is not.
Likewise, in compressed sensing the target state is required to be low rank but the
tested state is only required to be close to a state of low rank.
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C H A P T E R 3

OPTIMAL VERIFICATION OF QUANTUM

STATES WITH LOCAL MEASUREMENTS

3.1 Introduction

The goal of this chapter is to derive the optimal local verification strategy for

commonly used entangled states and to compare its performance to bounds for

competing protocols. In particular, we will compare performance with the bounds for

precision-guaranteed, non-adaptive quantum state tomography by Sugiyama,

Turner and Murao in [213], and the fidelity estimation protocol by Flammia and Yiu

in [84]. Specifically, we will demonstrate non-adaptive verification strategies for

arbitrary two-qubit states and stabilizer states of N qubits that are constructed

from local measurements, and require quadratically fewer copies to verify to within

a given fidelity than for these previous protocols. Moreover, we will see that the

restriction to a verifier that is only allowed local measurements incurs only a

constant factor penalty over the best non-local strategy, even if collective and

adaptive measurements are allowed.

The breakdown of this chapter is as follows: in § 3.2, we outline the premise of

verification protocols, and the types of protocols that we consider; we also introduce

the statistical tools that will be necessary to analyse their performance in the context

of asymmetric hypothesis tests. In § 3.3, we use this framework to treat the simplest

case of verification of a Bell state. This result is extended to verification of arbitrary

two qubit states in § 3.4, and then to verification of stabilizer states in § 3.5. We

discuss a particular practical relaxation of the verification premise in § 3.6, before

concluding with potential approaches to arbitrary state verification in § 3.7.
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3.2 Quantum state verification protocols

3.2.1 Premise

Colloquially, a quantum state verification protocol is a procedure for gaining

confidence that the output of some device is a particular state over any other.

However, for any scheme involving measurements on a finite number of copies of the

output state, one can always find an alternative state within some sufficiently small

distance that is guaranteed to fool the verifier. Furthermore, the outcomes of

measurements are, in general, probabilistic and a verification protocol collects a

finite amount of data; and so any statement about verification can only be made up

to some finite statistical confidence. The only meaningful statement to make in this

context is the statistical inference that the state output from a device sits within a

ball of a certain small radius (given some metric) of the correct state, with some

statistical confidence. Thus the outcome of a state verification protocol is a

statement like: “the device outputs copies of a state that has 99% fidelity with the

target, with 90% probability”. Note that this is different to the setting of state

tomography; a verification protocol answers the question: “Is the state |ψ〉?” rather

than the more involved tomographic question: “Which state do I have?”. Hence,

unlike tomography, a verification protocol may give almost no information about the

true state if the protocol fails.

We first proceed by setting up a formal framework for general state verification

protocols. We assume that we have access to a device D that is supposed to produce

copies of a state |ψ〉. However, D might not work correctly, and may actually produce

(potentially mixed) states σ1,σ2, . . . such that σi might not be equal to |ψ〉〈ψ|. In

order to distinguish this from the case where the device works correctly by making a

reasonable number of uses of D, we need to have a promise that these states σi are

sufficiently far from |ψ〉. So we are thus led to the following formulation of our

verification task:

Distinguish between the following two cases:

(a). (Good) σi = |ψ〉〈ψ| for all i;

(b). (Bad) For some fixed ε, F(|ψ〉,σi) := 〈ψ|σi|ψ〉 ≤ 1−ε for all i.

Given a verifier with access to a set of available measurements S, the protocols

we consider for completing this task are of the following form:
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Protocol Quantum state verification
1: for i = 1 to n do
2: Two-outcome measurement Mi ∈S on σi, where Mi ’s outcomes are associated

with “pass” and “fail”
3: if “fail” is returned then
4: Output “reject”
5: Output “accept”

We impose the conditions that in the good case, the protocol accepts with

certainty, whereas in the bad case, the protocol accepts with probability at most δ;

we call 1−δ the statistical power of the protocol. We then aim to find a protocol that

minimises n for a given choice of |ψ〉, ε and S, such that these constraints are

satisfied. Insisting that the protocol accepts in the good case with certainty implies

that all measurements in S are guaranteed to pass in this case. This is a desirable

property in itself, but one could consider more general non-adaptive protocols where

measurements do not output “pass” with certainty on |ψ〉, and the protocol

determines whether to accept based on an estimator constructed from the relative

frequency of “pass” and “fail” outcomes across all n copies. We show in § 3.2.3 that

this class of protocols has quadratically worse scaling in ε than protocols where each

measurement passes with certainty on |ψ〉.
Additionally, protocols of the type we consider satisfy some useful operational

properties:

A. Non-adaptivity. The strategy is fixed from the outset and depends only on the

mathematical description of |ψ〉, rather than the choices of any prior

measurements or their measurement outcomes.

B. Future-proofing. The strategy is independent of the infidelity ε, and gives a

viable strategy for any choice of ε. Thus an experimentalist is able to

arbitrarily decrease the infidelity ε within which verification succeeds by

simply taking more total measurements following the strategy prescription,

rather than modifying the prescription itself. The experimentalist is free to

choose an arbitrary ε > 0 and be guaranteed that the strategy still works in

verifying |ψ〉.

We can make the following observations about this framework:

1. Given no restrictions on Mi, the optimal protocol is simply for each

measurement to project onto |ψ〉. In fact, this remains optimal even over the

class of more general protocols making use of adaptivity or collective

measurements. One can see this as follows: if a two-outcome measurement M
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(corresponding to the whole protocol) is described by measurement operators

P (accept) and 1−P (reject), then if M accepts |ψ〉⊗n with certainty, we must

have P = |ψ〉〈ψ|⊗n + P ′ for some residual positive semidefinite operator P ′.
Then replacing P with |ψ〉〈ψ|⊗n gives at least as good a protocol, as the

probability of accepting |ψ〉 remains 1, while the probability of accepting other

states cannot increase.

The probability of acceptance in the bad case after n trials is then at most

(1−ε)n, so it is sufficient to take

n ≥ lnδ−1

ln((1−ε)−1)
≈ ε−1 lnδ−1 (3.1)

to achieve statistical power 1−δ. This will be the yardstick against which we

will compare our more restricted protocols below.

2. We assume that the states σi are independently and adversarially chosen.

This implies that if (as we will consider below) S contains only projective

measurements and does not contain the measurement projecting onto |ψ〉〈ψ|,
it is necessary to choose the measurement Mi at random from S and unknown

to the adversary. Otherwise, we could be fooled with certainty by the

adversary choosing σi to have support only in the “pass” eigenspace of Mi for

each copy i.

3. We can be explicit about the optimisation needed to derive the optimal

protocol in this adversarial setting. As protocols of the above form reject

whenever a measurement fails, the adversary’s goal at the ith step is to

maximise the probability that the measurement Mi at that step passes on σi.

If the jth measurement setting, M j, is picked from S at step i with probability

µi
j, the largest possible overall probability of passing for copy i is

Pr[Pass on copy i]= max
σi ,〈ψ|σi |ψ〉≤1−ε

∑
j
µi

j tr(P jσi), (3.2)

where we denote the corresponding “pass” projectors P j. We can write Ωi =∑
jµ

i
jP j, and then

Pr[Pass on copy i]= max
σ,〈ψ|σ|ψ〉≤1−ε

tr(Ωiσ). (3.3)

As the verifier, we wish to minimise this expression over all Ωi, so we end up

with a final expression that does not depend on i. This leads us to infer that

optimal protocols of this form can be assumed to be non-adaptive in two senses:

they do not depend on the outcome of previous measurements (which is clear, as

the protocol rejects if it ever sees a “fail” outcome); and they also do not depend

on the measurement choices made previously.
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Therefore, in order to find an optimal verification protocol, our task is to

determine

min
Ω

max
σ,〈ψ|σ|ψ〉≤1−ε

tr(Ωσ), (3.4)

where Ω is an operator of the form Ω=∑
jµ jP j for P j ∈S and some probability

µ j. We call such operators strategies. If S contained all measurement

operators (or even all projectors), Ω would be an arbitrary operator satisfying

0 ≤ Ω ≤ I. However, this notion becomes nontrivial when one considers

physically-motivated restrictions on S.

4. In a non-adversarial scenario, it may be acceptable to fix the measurements

in Ω in advance, with appropriate frequencies µ j. Then, given n, a strategy

Ω = ∑
jµ jP j corresponds to a protocol where for each j we deterministically

make µ jn measurements {P j,1−P j}. For large n, and fixed σi = σ, this will

achieve similar performance to the above protocol.

5. More complicated protocols with adaptive or collective measurements, or

measurements with more than two outcomes, cannot markedly improve on the

strategies derived here. We do not treat these more general strategies

explicitly, but note that the protocols we will describe based on local projective

measurements already achieve the globally optimal bound in Eq. 3.1 up to

constant factors, so any gain from these more complex approaches would be

minor.

We have shown that, given no constraints on the verifier’s measurement

prescription, the optimal strategy is to just project on to |ψ〉; however, in general the

projector |ψ〉〈ψ| will be non-local, which has the disadvantage of being harder to

implement experimentally. This is particularly problematic in linear quantum

optics, for example, where deterministic, unambiguous discrimination of a complete

set of Bell states is impossible [222, 40, 78]. Thus, for each copy there is a fixed

probability of the measurement returning a “null” outcome; hence, regardless of the

optimality of the verification strategy, merely the probability of its successful

operation decreases exponentially with the number of measurements. Alternatively,

one may consider a verification protocol in a distributed setting, where parties are

sent some part of a quantum state and must measure locally before classically

conferring their outcomes with other parties. As such, we seek optimal

measurement strategies that satisfy some natural properties that make them both

physically realisable and useful to a real-world verifier. We impose the following

properties:
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1. Locality. S contains only measurements corresponding to local observables,

acting on a single copy of the output state.

2. Projective measurement. S contains only binary-outcome, projective

measurements, rather than more elaborate POVMs.

3. Trust. The physical operation of each measurement device is faithful to its

mathematical description; it behaves as expected, without experimental error.

Thus for multipartite states we only consider strategies where each party locally

performs a projective measurement on a single copy, and the parties accept or reject

based on their collective measurement outcomes. We also highlight the trust

requirement to distinguish from the self-testing protocols outlined in § 2.1.2.

3.2.2 The Chernoff-Stein lemma

In the quantum state verification scenario where we only have access to single-copy

measurements, even if the systems under scrutiny are quantum mechanical the

data we collect are ostensibly classical, and so any test we construct falls under the

jurisdiction of classical information theory. The premise we have outlined in § 3.2.1

is of a binary hypothesis test (see § 2.1.6 for an introduction). The goal of this section

is to give a pedagogical introduction to results that scrutinise the ultimate

performance of binary hypothesis tests, culminating in the Chernoff-Stein lemma.

This will be the jumping-off point from which we derive the results on verification of

quantum states in the following sections. The following discussion closely

follows [68], § 11.8; we refer the reader there for a more thorough treatment.

Conversely, any reader that is either familiar with, or disinterested in, classical

estimation theory can safely skip this section and return to quantum protocols in

§ 3.2.3.

We will consider an experimental setup described by a set of n trials, each

governed by an independent and identically-distributed random variable X i. An

experiment X1, X2 . . . Xn will have a set of outcomes, which we denote x1, x2 . . . xn, or

alternatively by the vector x = (x1, x2 . . . xn). The set of all possible measurement

outcomes, i.e. all possible choices of x, we denote as X . Our null and alternative

hypotheses, H0 and H1, will simply be that the outcomes are drawn from a

probability distribution P0 or P1, respectively. We assume that we are promised that

one of these two cases is true, and we must decide which. For any test that we

construct, there will be some set of outcomes x where we accept H0, and some set of

outcomes where we accept H1. We’ll call these sets A0 ⊆X and A1 ⊆X , respectively.

Given the promise that either H0 or H1 is true, we have that A1 = Ā0 (where the

overbar denotes the set complement).
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A quantity that will routinely feature in this context is the relative entropy, or

Kullback-Leibler divergence, between two distributions; which we denote D(·‖·). As a

reminder, for the case of discrete probability distributions P0 and P1, it is defined as

D(P0‖P1)= ∑
x∈X

P0(x) log
P0(x)
P1(x)

. (3.5)

While it is commonly asserted that the relative entropy is a measure of dissimilarity

between two probability distributions, some care must be taken as it is not a true

metric. In particular, it is not guaranteed that D is symmetric; nor is it guaranteed

to satisfy the triangle inequality. The simplest colloquial description of the relative

entropy is that it is a quantifier of surprise; in a Bayesian sense, D(P0‖P1) quantifies

the amount of information gained in updating from a prior P0 to a posterior P1. In

hypothesis testing, the relative entropy appears as the limit of the likelihood ratio of

two hypotheses:

Lemma 10. If X1 . . . Xn is a sequence of iid random variables drawn from P0, and P1

is any other distribution, then

1
n

log
P0(X1 . . . Xn)
P1(X1 . . . Xn)

→ D(P0‖P1), (3.6)

where → denotes convergence in probability in the limit of large n.

Proof. Rearranging the lefthand side assuming that the trials are independent and

identically distributed gives

1
n

log
P0(X1 . . . Xn)
P1(X0 . . . Xn)

= 1
n

log
∏

i P0(X i)∏
i P1(X i)

= 1
n

∑
i

log
P0(X i)
P1(X i)

. (3.7)

Given the weak law of large numbers, this expression converges in probability to

EP0[log(P0(X )/P1(X ))]= D(P0‖P1).

While Lemma 10 is a precise statement about the asymptotics of the

log-likelihood ratio, it is not the case for a fixed and finite n that the log-likelihood

ratio and the relative entropy are guaranteed to be close. However, we will make use

of a subset of sequences of outcomes, that occurs with high probability and where

the log-likelihood ratio and the relative entropy are guaranteed to be close. If a

sequence of outcomes x ∈X satisfies

D(P0‖P1)−ε≤ 1
n

log
P0(x)
P1(x)

≤ D(P0‖P1)+ε (3.8)

for a fixed and finite n and ε then we call the sequence of outcomes x “typical”; and we

use notation X ε
n(P0‖P1) (or the shorthand X ε

n when the distributions are clear from

context) to denote the set of all sequences of outcomes that are typical for a particular

n and ε. Typical sequences satisfy some nice operational properties:
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Lemma 11. For a typical x (i.e. x ∈ X ε
n(P0‖P1)):

1. The probability that a sequence is drawn from the alternative distribution P1 is

bounded:

P0(x)2−n[D(P0‖P1)+ε] ≤ P1(x)≤ P0(x)2−n[D(P0‖P1)−ε]. (3.9)

2. Let P0(X ε
n(P0‖P1)) = ∑

x∈X ε
n P0(x). Then the expected probability that we

successfully guess that a typical sequence is drawn from distribution P0 is

P0(X ε
n(P0‖P1))> 1−ε, (3.10)

for large enough n.

3. Let P1(X ε
n(P0‖P1)) = ∑

x∈X ε
n P1(x). Then the expected probability that we guess

that a typical sequence is drawn from the alternative distribution P1 is

P1(X ε
n(P0‖P1))< 2−n[D(P0‖P1)−ε]. (3.11)

Proof. Eq. 3.9 follows directly from rearranging the definition of a typical x, and

Eq. 3.10 is just a restatement of Lemma 10. Eq. 3.11 follows from the following:

P1(X ε
n(P0‖P1))= ∑

x∈X ε
n

P1(x)≤ ∑
x∈X ε

n

P0(x)2−n[D(P0‖P1)−ε], (3.12)

where the inequality is from Eq. 3.9. Then since
∑

x P0(x ∈ X ) ≤ 1 for all possible

subsets X , Eq. 3.11 immediately follows.

Suppose that we run our experiment, and get a sequence of outcomes drawn from

some subset S ⊂X . We are interested in an asymmetric hypothesis test, where one

type of error probability is fixed; say P0(S) > 1− ε. Then we can bound the other

probability of error using the properties of typical sequences:

Lemma 12. For S ⊂X such that P0(S)> 1−ε, then for any other distribution P1,

P1(S)> (1−2ε)2−n[D(P0‖P1)+ε]. (3.13)

Proof. We start by noting that P1(S) ≥ P1(X ε
n ∩S), for any set of typical sequences

X ε
n. So, if we also make use of the lower bound on P1(x) in Eq. 3.9, we have that

P1(S)≥ P1(X ε
n ∩S)= ∑

x∈S∩X ε
n

P1(x)

≥ ∑
x∈X ε

n∩S
P0(x)2−n[D(P0‖P1)+ε]

= 2−n[D(P0‖P1)+ε]P0(X ε
n ∩S). (3.14)

40



3.2. QUANTUM STATE VERIFICATION PROTOCOLS

Now, we know from the initial assumption about S that P0(S) > 1− ε, and we know

from Eq. 3.10 that P0(X ε
n) > 1− ε. Additionally, P0(S ∪ X ε

n) ≤ 1, as P0(·) denotes a

probability. Then using the inclusion-exclusion principle,

P0(X ε
n ∩S)= P0(X ε

n)+P0(S)−P0(X ε
n ∪S)≥ 1−ε+1−ε−1= 1−2ε. (3.15)

Combining Eqs. 3.15 and 3.14 gives the desired result.

These ingredients are enough to derive the optimal rate at which one can

perform an asymmetric hypothesis test. In general, given a fixed Type I error, the

optimum asymptotic rate at which the Type II error can be minimised in an

asymmetric hypothesis test is given by the Chernoff-Stein lemma:

Theorem 13 (Cover and Thomas [68], Theorem 11.8.3.). Let X1 . . . Xn be drawn iid

from a probability mass function Q. Then consider the hypothesis test between

alternatives H0: Q = P0 and H1: Q = P1. Let A0 ⊂ X be the subset of outcome

sequences where we conclude that the null hypothesis is correct. Denote Type I and

Type II errors after n samples as α∗
n and β∗

n, respectively. Then for some constraint

parameter 0< ε< 1
2 , define the minimal Type II error given a constrained Type I error

as

δεn =min
A0
α∗

n<ε
β∗

n. (3.16)

Then asymptotically, the rate at which this error diminishes given increasing trials is

lim
n→∞

1
n

lnδεn =−D(P0 ‖P1), (3.17)

where D(P0‖P1) is the relative entropy between probability distributions P0 and P1.

Proof. We must show two things for this theorem to be correct: (i) that there exists

a particular choice of A0 that satisfies Eq. 3.17; and (ii) that no other choice can give

a steeper decrease. For (i), take A0 = X ε
n. Then we are guaranteed that α∗

n < ε, by

Eq. 3.10, and we are guaranteed that the rate is at most −(D(P0‖P1)−ε), by Eq. 3.11.

For (ii), we know from Lemma 3.13 that P1(S) is bounded from below; so we can

rearrange and take the limit n →∞ to yield

lim
n→∞

1
n

logP1(S)>−(D(P0‖P1)+ε)+ lim
n→∞

1
n

log(1−2ε)=−(D(P0‖P1)+ε). (3.18)

This is strictly smaller in magnitude than the rate for X ε
n, and so this choice is

asymptotically optimal in the rate at which the Type II error decreases for fixed

Type I error.
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For clarity, we drop the sub- and superscript δεn → δ. After rearranging the

expression for the optimal asymptotic Type II error given by the Chernoff-Stein

lemma, we can asymptotically achieve a test to discriminate P0 and P1 with

statistical power 1−δ by taking a number of measurements

n > 1
D (P0‖P1)

ln
1
δ

. (3.19)

Moreover, this bound is tight in that it gives the correct asymptotic relationship

between n, D and δ; generically δ can be lower bounded ([68], p666) such that

e−Dn

n+1
≤ δ≤ e−Dn. (3.20)

3.2.3 State verification and hypothesis testing

The state verification scenario that we have outlined above is a binary hypothesis

test between the case labelled “Good”, where each state output from the experiment

is |ψ〉, and the case labelled “Bad” where each state output is far from |ψ〉. We have

asserted the following proposition:

Proposition 14. Any strategy Ω that: (a) accepts |ψ〉 with certainty,

p := tr(Ω|ψ〉〈ψ|) = 1; and (b) does not accept σ with certainty (tr(Ωσ) := p −∆ε, for

∆ε > 0) requires asymptotically fewer measurements in infidelity ε to distinguish

these states to within a fixed Type II error than the best protocol based on a strategy

Ω′ where tr(Ω′|ψ〉〈ψ|)< 1.

Proposition 14 states that, in a framework where we attempt to verify |ψ〉 by

repeating two-outcome measurements picked from some set, asymptotically it is

always beneficial to use measurements that accept |ψ〉 with certainty. In this case,

each measurement is a Bernoulli trial with some acceptance probability. An

example of a protocol which would not satisfy this property would be estimating the

probability of violating a Bell inequality for a maximally entangled two qubit state.

In this case, we have shown the verifier’s choice of Ω is fixed, independent of the

trial, and that in the adversarial scenario the fooling state σ is also fixed. As such,

each measurement is just a Bernoulli trial with some fixed acceptance probability.

As demonstrated in § 3.2.2, the best asymptotic rate at which one could expect the

probability of error to decrease in this hypothesis test is given by the relative entropy,

as dictated by the Chernoff-Stein lemma (Thm. 13). In particular, the number of

copies needed is

n = 1
D(p‖p−∆ε)

log
1
δ

. (3.21)
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The relative entropy typically takes a pair of probability distributions as arguments,

but given that each hypothesis is concerned only with a single Bernoulli-distributed

random variable uniquely specified by a pair of real parameters, we will use the

shorthand D(a‖b) for Bernoulli parameters a and b. In this case the relative entropy

can be expanded as

D(a‖b)= a ln
a
b
+ (1−a) ln

1−a
1−b

. (3.22)

Two important limiting cases of this expression have relevance here. Firstly, if

the gap between p and p−∆ε is small, then Taylor expanding the expression for the

relative entropy for small ∆ε gives that it is sufficient to take

n ≥ 2p(1− p)
∆2
ε

ln
1
δ

. (3.23)

Secondly, in the limit where p → 1, using that limp→1−(1− p) ln(1− p)= 0, the relative

entropy becomes

lim
p→1− D(p‖p−∆ε)= ln

1
1−∆ε

; (3.24)

and so the number of samples scales like

n ≥ −1
log(1−∆ε)

ln
1
δ
≈ 1
∆ε

ln
1
δ

. (3.25)

These are the limiting cases of the scaling of n with ∆ε, the gap between the

acceptance probabilities for |ψ〉 and a state ε away. In the worst case, n scales

quadratically in ∆−1
ε ; however, for any strategy where one of the Bernoulli

hypotheses to be tested is accepted with certainty, only a total number of

measurements linear in ∆−1
ε are required. Thus asymptotically, a strategy where

p = 1 is always favourable (i.e. gives a quadratic improvement in scaling with ∆ε) for

any ∆ε > 0. Hence any strategy that is constructed from measurements that accept

|ψ〉 with certainty requires quadratically fewer copies to verify to within a fixed ∆ε,

in general.

3.2.4 Verification strategy optimisation

In this section, we simplify the form of the optimisation in Eq. 3.4 using the strategy

requirements outlined above. We start by making the following useful observation:

Lemma 15. We can assume without loss of generality that, in Eq. 3.4, σ is pure.

Proof. Assume the adversary chooses a fixed density matrix σ, which is globally

optimal: it forces the verifier to accept σ with the greatest probability among states

σ such that 〈ψ|σ|ψ〉 := r ≤ 1− ε. The probability of accepting this σ given strategy Ω

is then

Pr[Accept σ]= tr(Ωσ). (3.26)
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We have asserted that Ω accepts |ψ〉 with certainty: 〈ψ|Ω|ψ〉 = 1. However, for this to

be the case Ω must have |ψ〉 as an eigenstate with eigenvalue 1; thus we can write

Ω= |ψ〉〈ψ|+∑
j

c j|ψ⊥
j 〉〈ψ⊥

j | (3.27)

where the states {|ψ⊥
j 〉} are a set of mutually orthogonal states orthogonal to |ψ〉.

Then

Pr[Accept σ]= 〈ψ|σ|ψ〉+∑
j

c j〈ψ⊥
j |σ|ψ⊥

j 〉 (3.28)

= r+∑
j

c j〈ψ⊥
j |σ|ψ⊥

j 〉. (3.29)

We can write

σ= a|ψ〉〈ψ|+bσ⊥+ c|ψ〉〈Φ⊥|+ c∗|Φ⊥〉〈ψ|, (3.30)

where σ⊥ is a density matrix entirely supported in the subspace spanned by the

states |ψ⊥
j 〉, and |Φ⊥〉 is a vector in the subspace spanned by |ψ⊥

j 〉. We know that

a = r as 〈ψ|σ|ψ〉 = r, and b = 1− r as tr(σ)= 1. Then,

Pr[Accept σ]= r+∑
j

c j〈ψ⊥
j |

[
r|ψ〉〈ψ|+ (1− r)σ⊥+ c|ψ〉〈Φ⊥|+ c∗|Φ⊥〉〈ψ|]|ψ⊥

j 〉 (3.31)

= r+ (1− r)
∑

j
c j 〈ψ⊥

j |σ⊥|ψ⊥
j 〉 . (3.32)

Since the summation in Eq. 3.32 is an average over expectation values, the adversary

cannot do better than picking the single largest expectation value in the summation;

they must take σ⊥ to be the state |ψ⊥
max〉〈ψ⊥

max|, where |ψ⊥
max〉 is the state |ψ⊥

j 〉 in the

spectral decomposition of Ω with largest eigenvalue, cmax. Thus

max
σ

tr(Ωσ)= r+ (1− r)cmax, (3.33)

which is achieved by any density matrix of the form

σ= r|ψ〉〈ψ|+ (1− r)|ψ⊥
max〉〈ψ⊥

max|+ c|ψ〉〈Φ⊥|+ c∗|Φ⊥〉〈ψ|. (3.34)

Note that the pure state σ= |φ〉〈φ| for |φ〉 =p
r|ψ〉+p

1− r|ψ⊥
max〉 is of this form, and

so we can assume that the adversary makes this choice.

Given that the state σ can be taken to be pure and that the fidelity F(|ψ〉,σ)≤ 1−ε,
we write σ= |ψε̄〉〈ψε̄|, where |ψε̄〉 :=p

1− ε̄|ψ〉+p
ε̄|ψ⊥〉 and 〈ψ|ψ⊥〉 = 0, for some ε̄≥ ε

chosen by the adversary, to be optimised later. Denote

min
Ω

max
σ〈ψ|σ|ψ〉≤1−ε

tr(Ωσ) := 1−∆ε. (3.35)
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Then the optimisation problem becomes to determine ∆ε, where

∆ε =max
Ω

min
|ψ⊥〉,ε̄≥ε

ε̄(1−〈ψ⊥|Ω|ψ⊥〉)−2
√
ε̄(1− ε̄)Re(〈ψ|Ω|ψ⊥〉) (3.36)

and Ω|ψ〉 = |ψ〉.

This expression can be simplified given that Ω|ψ〉 = |ψ〉. In particular, we then know

that 〈ψ⊥|Ω|ψ〉 = 0 for any choice of orthogonal state |ψ⊥〉. Thus the termp
ε̄(1− ε̄)Re(〈ψ|Ω|ψ⊥〉) automatically vanishes. We are then left with the

optimisation

∆ε =max
Ω

min
|ψ⊥〉,ε̄≥ε

ε̄(1−〈ψ⊥|Ω|ψ⊥〉), (3.37)

where Ω|ψ〉 = |ψ〉.

As for the optimisation of ε̄, note that it is the goal of the adversary to make ∆ε as

small as possible; and so they are obliged to set ε̄= ε. Then the optimisation becomes

∆ε = εmax
Ω

min
|ψ⊥〉

(1−〈ψ⊥|Ω|ψ⊥〉), (3.38)

where Ω|ψ〉 = |ψ〉.

Note that this expression implies that any Ω where Ω|ψ〉 = |ψ〉 automatically

satisfies the future-proofing property: firstly that Ω is independent of ε, but also that

the strategy must be viable for any choice of ε (i.e. there must not be a choice of ε

where ∆ε = 0). For an initial choice ∆ε > 0, we have that 1−〈ψ⊥|Ω|ψ⊥〉 > 0 and so

∆ε′ > 0 for any 0 < ε′ < ε. Thus the verifier is free to decrease ε arbitrarily without

fear of the strategy failing. Note also that this condition may not be automatically

guaranteed if the verifier chooses an Ω such that Ω|ψ〉 6= |ψ〉.
Regarding the optimisation problem in Eq. 3.38, for an arbitrary state |ψ〉 on

n qubits it is far from clear how to: (a) construct families of viable Ω (built from

local projective measurements) that accept |ψ〉 with certainty; (b) to then solve this

optimisation problem over those families of Ω. For the remainder of this work, we

focus on states of particular experimental interest where we can solve the problem:

arbitrary states of two qubits, and stabilizer states. To illustrate our approach, we

start with the case of a Bell state before generalising to larger classes of states.
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3.3 Warm-up: Bell state verification

Consider the case of verifying the Bell state |Φ+〉 = 1p
2
(|00〉+ |11〉). If we maintain a

strategy where all measurements accept |Φ+〉 with certainty, then it must be the case

that Ω|Φ+〉 = |Φ+〉. The optimisation problem for the verifier-adversary pair is then

given by ∆ε:

∆ε =max
Ω

min
σ〈ψ|σ|ψ〉≤1−ε

tr[Ω(|Φ+〉〈Φ+|−σ)]. (3.39)

However, we have shown in § 3.2.4 that it is never beneficial for the adversary to: (a)

choose a non-pure σ; or (b) to pick a σ such that 〈ψ|σ|ψ〉 < 1−ε. Rewrite σ= |ψε〉〈ψε|,
where |ψε〉 =

p
1−ε|Φ+〉+p

ε|ψ⊥〉 for some state |ψ⊥〉 such that 〈Φ+|ψ⊥〉 = 0. Then,

∆ε =max
Ω

min
|ψ⊥〉

ε(〈Φ+|Ω|Φ+〉−〈ψ⊥|Ω|ψ⊥〉)

−2
√
ε(1−ε)Re〈Φ+|Ω|ψ⊥〉. (3.40)

Given that Ω|Φ+〉 = |Φ+〉, we can simplify by noting that 〈Φ+|Ω|Φ+〉 = 1 and

〈Φ+|Ω|ψ⊥〉 = 0. Thus,

∆ε =max
Ω

min
|ψ⊥〉

ε(1−〈ψ⊥|Ω|ψ⊥〉)

= ε(1−min
Ω

max
|ψ⊥〉

〈ψ⊥|Ω|ψ⊥〉), (3.41)

where the verifier controls Ω and the adversary controls |ψ⊥〉. Given that |Φ+〉 is

itself an eigenstate ofΩ, the worst-case scenario for the verifier is for the adversary to

choose |ψ⊥〉 as the eigenstate of Ω with the next largest eigenvalue. If we diagonalise

Ω we can write Ω= |Φ+〉〈Φ+|+∑3
j=1ν j|ψ⊥

j 〉〈ψ⊥
j |, where 〈Φ+|ψ⊥

j 〉 = 0∀ j. The adversary

picks the state |ψ⊥
max〉 with corresponding eigenvalue νmax = max j ν j. Now, consider

the trace of Ω: if tr(Ω) < 2 then the strategy must be a convex combination of local

projectors, at least one of which is rank 1. However, the only rank 1 projector that

satisfies P+|Φ+〉 = |Φ+〉 is P+ = |Φ+〉〈Φ+|, which is non-local; and therefore tr(Ω) ≥ 2.

Combining this with the expression for Ω above gives tr(Ω) = 1+∑
j ν j ≥ 2. It is

always beneficial to the verifier to saturate this inequality, as any extra weight on

the subspace orthogonal to |Φ+〉 can only increase the chance of being fooled by the

adversary. Thus the verifier is left with the optimisation

minνmax =minmax
k

νk,
∑
k
νk = 1. (3.42)

This expression is optimised for ν j = 1
3 , j = 1,2,3. In this case, Ω= |Φ+〉〈Φ+|+ 1

3 . Then

we can rewrite Ω as

Ω= 1
3

(P+
X X +P+

−Y Y +P+
ZZ), (3.43)
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where P+
X X is the projector onto the positive eigensubspace of the tensor product of

Pauli matrices X X (and likewise for −Y Y and ZZ). The operational interpretation

of this optimal strategy is then explicit: for each copy of the state, the verifier

randomly chooses a measurement setting from the set {X X ,−Y Y , ZZ} all with

probability 1
3 , and accepts only on receipt of outcome “+1” on all n measurements.

Note that we could expand Ω differently, for example by conjugating each term in

the above expression by any local operator that leaves |Φ+〉 alone; the decomposition

above is only one of a family of optimal strategies. As for scaling, we know that

∆ε = ε(1− νmax) = 2ε
3 , and the number of measurements needed to verify the Bell

state |Φ+〉 is then nopt =
[
ln

( 3
3−2ε

)]−1 ln 1
δ
≈ 3

2ε ln 1
δ
. Note that this is only worse than

the optimal non-local strategy by a factor of 1.5.

In comparison, consider instead verifying a Bell state by performing a CHSH

test. Then even in the case of trusted measurements, the total number of

measurements scales like O
(

1
ε2

)
[212] (see § 2.1.3), which is quadratically worse

than the case of measuring the stabilizers {X X ,−Y Y , ZZ}. This suboptimal scaling

is shared by the known bounds for non-adaptive quantum state tomography with

single-copy measurements in [213] and fidelity estimation in [84]. See § 2.3.1

and [206, 82, 210] for further discussion of this scaling in tomography. Additionally,

two-qubit tomography potentially requires five times as many measurement

settings. We also note that a similar quadratic improvement was derived in

adaptive quantum state tomography in [149], in the sample-optimal tomographic

scheme in [100] and in the quantum state certification scheme in [11]; however, the

schemes therein assume access to either non-local or collective measurements.

3.4 Verifying arbitrary states of two qubits

The goal is unchanged for other pure states of two qubits: we seek strategies that

accept the target state with certainty, and hence achieve the asymptotic advantage

outlined for Bell states above. It is not clear a priori that such a strategy exists

for general states, in a way that is as straightforward as the previous construction.

However, we show that for any two-qubit state not only does such a strategy exist,

but we can optimise within the family of allowable strategies and give an analytic

expression with optimal constant factors.

We first remark that we can restrict to states of the form |ψ〉 = sinθ|00〉+cosθ|11〉
without loss of generality, as any state is locally equivalent to a state of this form, for

some θ. Specifically:

Lemma 16. Given any two qubit state |ψ〉 with optimal strategy Ωopt, a locally

equivalent state (U ⊗V )|ψ〉 has optimal strategy (U ⊗V )Ωopt(U ⊗V )†.
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Proof. We must show that strategy Ω′ = (U ⊗V )Ωopt(U ⊗V )† is both a valid strategy,

and is optimal for verifying |ψ′〉 = (U ⊗V )|ψ〉.
Validity: If Ωopt =∑

jµ jP j is a convex combination of local projectors, then so is Ω′:

Ω′ = (U ⊗V )Ω(U ⊗V )† =∑
j
µ j(U ⊗V )P j(U ⊗V )†

=∑
j
µ jP ′

j. (3.44)

Also, if Ωopt|ψ〉 = |ψ〉 then Ω′|ψ′〉 = |ψ′〉:

Ωopt|ψ〉 = |ψ〉⇒ (U ⊗V )Ω|ψ〉 = popt(U ⊗V )|ψ〉
⇒ (U ⊗V )Ω(U ⊗V )†(U ⊗V )|ψ〉 = (U ⊗V )|ψ〉
⇒Ω′|ψ′〉 = |ψ′〉. (3.45)

Optimality: The performance of a strategy is determined by the maximum probability

of accepting an orthogonal state |ψ⊥〉. For the strategy-state pairs (Ωopt, |ψ〉) and

(Ω′, |ψ′〉), we denote this parameter qopt and q′, respectively. Then

qopt =max
|ψ⊥〉

〈ψ⊥|Ωopt|ψ⊥〉 = max
|φ〉,〈ψ|φ〉=0

〈φ|Ωopt|φ〉 (3.46)

= max
(U⊗V )|φ〉,〈ψ|(U⊗V )†(U⊗V )|φ〉=0

〈φ|(U ⊗V )†(U ⊗V )Ωopt(U ⊗V )†(U ⊗V )|φ〉 (3.47)

= max
|φ′〉,〈ψ′|φ′〉=0

〈φ′|Ω′|φ′〉 = q′. (3.48)

So applying the same local rotation to the strategy and the state results in no change

in the performance of the strategy. Thus the following simple proof by contradiction

holds: assume that there is a better strategy for verifying |ψ′〉, denoted Ω′′. But then

the strategy (U⊗V )†Ω′′(U⊗V ) must have a better performance for verifying |ψ〉 than

Ωopt, which is a contradiction. Thus Ω′ must be the optimal strategy for verifying

|ψ′〉.

We are close to being able to derive the optimal local strategy for states of two

qubits. However, we first prove a useful (and at face value, a somewhat obvious)

lemma - that no optimal strategy can contain the identity measurement (i.e. it is

never beneficial for a verifier to always accept, regardless of the tested state). In the

following discussion, we denote the projector Π := 1−|ψ〉〈ψ|. For a strategy Ω where

Ω|ψ〉 = |ψ〉, the quantity of interest which determines ∆ε in (3.38) is the maximum

probability of accepting an orthogonal state |ψ⊥〉:

q := ‖ΠΩΠ‖ =max
|ψ⊥〉

〈ψ⊥|Ω|ψ⊥〉. (3.49)

If a strategy is augmented with an accent or subscript, the parameter q inherits that

accent or subscript.
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Lemma 17. Consider an operator 0≤Ω≤ 1, Ω|ψ〉 = |ψ〉 of the form Ω= (1−α)Ω1+α1
for 0≤α≤ 1. Then q ≥ q1.

Proof. For arbitrary |ψ⊥〉 such that 〈ψ|ψ⊥〉 = 0, 〈ψ⊥|Ω|ψ⊥〉 = (1−α)〈ψ⊥|Ω1|ψ⊥〉+α.

This is maximised by choosing |ψ⊥〉 such that 〈ψ⊥|Ω1|ψ⊥〉 = q1, giving q = (1−α)q1+
α≥ q1.

We are now in a position to derive the optimal strategy. Note that the special cases

where |ψ〉 is a product state (θ = 0 or π
2 ) or a Bell state (θ = π

4 ) are treated separately.

Theorem 18. Any optimal strategy for verifying a state of the form |ψ〉 = sinθ|00〉+
cosθ|11〉 for 0< θ < π

2 , θ 6= π
4 that accepts |ψ〉 with certainty and satisfies the properties

of locality, trust and projective measurement, can be expressed as a strategy involving

four measurement settings:

Ωopt = 2−sin(2θ)
4+sin(2θ)

P+
ZZ + 2(1+sin(2θ))

3(4+sin(2θ))

3∑
k=1

(1−|φk〉〈φk|), (3.50)

where the states |φk〉 are

|φ1〉 =
(

1p
1+ tanθ

|0〉+ e
2πi
3p

1+cotθ
|1〉

)
⊗

(
1p

1+ tanθ
|0〉+ e

πi
3p

1+cotθ
|1〉

)
, (3.51)

|φ2〉 =
(

1p
1+ tanθ

|0〉+ e
4πi
3p

1+cotθ
|1〉

)
⊗

(
1p

1+ tanθ
|0〉+ e

5πi
3p

1+cotθ
|1〉

)
, (3.52)

|φ3〉 =
(

1p
1+ tanθ

|0〉+ 1p
1+cotθ

|1〉
)
⊗

(
1p

1+ tanθ
|0〉− 1p

1+cotθ
|1〉

)
. (3.53)

The number of measurements needed to verify to within fidelity ε and statistical power

1−δ is

nopt ≈ (2+sinθ cosθ)ε−1 lnδ−1. (3.54)

Proof. We will break the proof approach down into five steps: (i) elucidation of the

most general possible measurement strategy for a state of two qubits; (ii) restriction

given that every measurement setting must accept |ψ〉 with certainty; (iii)

restriction given that the strategy must share the same symmetries as |ψ〉; (iv)

restriction given some convexity arguments about the space of allowed strategies;

and (v) parameterisation and optimisation over the remaining strategy.

(i) The most general strategy for a state of two qubits

The strategy Ω can be written as a convex combination of local projectors. We can

group the projectors by their action according to two local parties, Alice and Bob, and

then it must be expressible as a convex combination of five types of terms, grouped

by trace:

49



CHAPTER 3. OPTIMAL VERIFICATION OF QUANTUM STATES WITH LOCAL
MEASUREMENTS

Ω= c1
∑

i
µi(ρ i

1 ⊗σi
1)+ c2

∑
j
ν j(ρ

j
2 ⊗σ

j
2 +ρ

j⊥
2 ⊗σ j⊥

2 )

+ c3
∑
k
ηk(1−ρk

3 ⊗σk
3)+ c4

∑
l

[ζl(ρl
4 ⊗1)+ξl(1⊗σl

4)]+ c51⊗1, (3.55)

where ρk
i and σk

i are single-qubit pure states and the subscript denotes the type of

term in question. The state ρ j⊥ is the density matrix defined by tr(ρ jρ j⊥) = 0.

Qualitatively, given two local parties Alice and Bob with access to one qubit each,

and projectors with outcomes {λ, λ̄}, the terms above correspond to the following

strategies: (1) Alice and Bob both apply a projective measurement and accept if both

outcomes are λ; (2) Alice and Bob both apply a projective measurement and accept if

both outcomes agree; (3) Alice and Bob both apply a projective measurement and

accept unless both outcomes are λ; (4) Alice or Bob applies a projective

measurement and accepts on outcome λ, and the other party abstains; and (5) both

Alice and Bob accept without applying a measurement.

(ii) Restriction given that the target state is accepted with certainty

We show in § 2.1.6 that strategies that accept |ψ〉 with certainty have a quadratic

advantage in scaling in terms of ε. Given this, we enforce this constraint from the

outset and then show that a viable strategy can still be constructed. For the general

strategy in Eq. 3.55 to accept |ψ〉 with certainty, each term in its expansion must

accept |ψ〉 with certainty. However, this is impossible to achieve for some of the

terms in the above expansion. In particular, we show that the terms (ρ⊗σ), (ρ⊗1)

and (1⊗σ) cannot accept |ψ〉 with certainty, and the form of the term (ρ⊗σ+ρ⊥⊗σ⊥)

is restricted.

(ρ⊗σ): given that ρ and σ are pure, write ρ⊗σ= |u〉〈u|⊗ |v〉〈v|, and so this term

only accepts |ψ〉 with certainty if ‖(|u〉〈u|⊗ |v〉〈v|)|ψ〉‖ = 1. However, for 0 < θ < π
2 the

state |ψ〉 is entangled and this condition cannot be satisfied.

(ρ⊗1) or (1⊗σ): For the term (ρ⊗1), re-express ρ in terms of its Pauli expansion:

ρ⊗1= 1
2 (1+αX +βY +γZ)⊗1, for −1≤α,β,γ≤ 1. Then the condition that this term

accepts with probability p = 1 is

〈ψ|1
2

(1+αX +βY +γZ)⊗1|ψ〉 = 1. (3.56)

By inserting the definition of |ψ〉, this becomes 1
2 (1 − γcos(2θ)) = 1, which is

unsatisfiable for 0 < θ < π
2 . It is readily checkable that an identical condition is

derived for the term 1⊗σ, given the symmetry of the state |ψ〉 under swapping.
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(ρ⊗σ+ρ⊥⊗σ⊥): for this term, we can expand both ρ and σ in terms of Pauli

operators:

ρ = 1
2

(1+αX +βY +γZ); ρ⊥ = 1
2

(1−αX −βY −γZ) (3.57)

σ= 1
2

(1+α′X +β′Y +γ′Z); σ⊥ = 1
2

(1−α′X −β′Y −γ′Z). (3.58)

Inserting these expressions and the definition of |ψ〉 into the condition that p = 1

gives the constraint

γγ′+ (αα′−ββ′)sin(2θ)= 1. (3.59)

Now, we know from the Cauchy-Schwarz inequality that

γγ′+ (αα′−ββ′)sin(2θ)≤
√
α′2 +β′2 +γ′2

√
α2 sin2(2θ)+β2 sin2(2θ)+γ2 ≤ 1, (3.60)

where the second inequality is derived from the fact that {α,β,γ}, {α′,β′,γ′} are the

parameterisation of a pair of density matrices. There are two ways that this

inequality can be saturated: (a) sin(2θ) = 1; (b) αα′−ββ′ = 0, γγ′ = 1. In all other

cases, the inequality is strict. Thus the constraint in Eq. 3.59 cannot be satisfied in

general. Exception (a) corresponds to θ = π
4 , which is omitted from this proof and

treated separately. In exception (b), we have that γγ′ = 1 and so either γ = γ′ = 1 or

γ= γ′ =−1. In both cases we have that

ρ⊗σ+ρ⊥⊗σ⊥ =
(
1+Z

2
⊗ 1+Z

2

)
+

(
1−Z

2
⊗ 1−Z

2

)
= P+

ZZ , (3.61)

where P+
ZZ is the projector onto the positive eigenspace of ZZ. This is the only

possible choice for this particular term that accepts |ψ〉 with certainty.

We can also make use of Lemma 17 to remove the term 1⊗1. Given this and

the restrictions above from enforcing that p = 1, the measurement strategy can be

written

Ω=αP+
ZZ + (1−α)

∑
k
ηk(1−ρk ⊗σk), (3.62)

where
∑

k ηk = 1 and 0≤α≤ 1.

(iii) Restriction given symmetries of the target state

We’ll try to further narrow down the form of this strategy by averaging; i.e. by noting

that, as |ψ〉 is an eigenstate of a matrix Mζ⊗M−ζ where

Mζ =
(
1 0

0 e−iζ

)
, (3.63)

then conjugating the strategy by Mζ⊗M−ζ and integrating over all possible ζ cannot

make the strategy worse; if we consider an averaged strategy 〈Ω〉 such that

〈Ω〉 = 1
2π

∫ π

−π
dζ(Mζ⊗M−ζ)Ω(M−ζ⊗Mζ), (3.64)
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then necessarily the performance of 〈Ω〉 cannot be worse than that of Ω. To see this,

note that the averaging procedure does not affect the probability of accepting the

state |ψ〉. However, for each particular value of ζ the optimisation for the adversary

may necessarily lead to different choices for the orthogonal states |ψ⊥(ζ)〉, and so

averaging over ζ cannot be better for the adversary than choosing the optimal |ψ⊥〉
at ζ= 0.

We can also consider discrete symmetries of the state |ψ〉. In particular, |ψ〉 is

invariant under both swapping the two qubits, and complex conjugation (with respect

to the standard basis); by the same argument, averaging over these symmetries (i.e.

by considering Ω′ = 1
2 (Ω+ (SWAP)Ω(SWAP†)) and Ω′′ = 1

2 (Ω+Ω∗)) cannot produce

strategies inferior to the original Ω. Therefore we can consider a strategy averaged

over these families of symmetries of Ω, without any loss in performance.

This averaging process is useful for three reasons. Firstly, it heavily restricts

the number of free parameters in Ω requiring optimisation. Secondly, it allows us

to be explicit about the general form of Ω. Thirdly, the averaging procedures are

distributive over addition; and so we can make the replacement

Ω=αP+
ZZ + (1−α)

∑
k
ηk(1−ρk ⊗σk)→〈αP+

ZZ + (1−α)
∑
k
ηk(1−ρk ⊗σk)〉

=αP+
ZZ + (1−α)

∑
k
ηk〈1−ρk ⊗σk〉. (3.65)

Note that a single term 1−ρk ⊗σk, may, after averaging, be a convex combination of

multiple terms of the form 1 − ρ ⊗ σ. To proceed, we will use this averaging

procedure to show that it suffices to only include a single, post-averaging term of the

form 〈1−ρk ⊗σk〉 in the strategy Ω, and that the resulting operator can be explicitly

decomposed into exactly three measurement settings.

Consider a general operatorΩ, expressed as a 4×4 matrix. First, take the discrete

symmetries of |ψ〉. Averaging over complex conjugation in the standard basis implies

that the coefficients of 〈Ω〉 are real; and averaging over qubit swapping implies that

〈Ω〉 is symmetric with respect to swapping of the two qubits. Denote the operator

after averaging these discrete symmetries as Ω̄. Then consider averaging over the

continuous symmetry of |ψ〉:

〈Ω〉 = 1
2π

∫ π

−π
dζ(Mζ⊗M−ζ)Ω̄(M−ζ⊗Mζ) (3.66)

= 1
2π

∫ π

−π
dζ


1 0 0 0

0 eiζ 0 0

0 0 e−iζ 0

0 0 0 1




ω00 ω01 ω01 ω03

ω01 ω11 ω12 ω13

ω01 ω12 ω11 ω13

ω03 ω13 ω13 ω33




1 0 0 0

0 e−iζ 0 0

0 0 eiζ 0

0 0 0 1

 . (3.67)
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Thus after averaging using the above symmetries of |ψ〉, 〈Ω〉 can be written in the

standard basis as

〈Ω〉 =


a 0 0 b

0 c 0 0

0 0 c 0

b 0 0 d

 , (3.68)

for a,b, c,d ∈R. Enforcing that the strategy accepts |ψ〉 with certainty yields 〈Ω〉|ψ〉 =
|ψ〉, or explicitly that

〈Ω〉 =


1−bcotθ 0 0 b

0 c 0 0

0 0 c 0

b 0 0 1−b tanθ

 . (3.69)

The eigensystem of this operator is then completely specified; besides |ψ〉, it has the

following eigenvectors:

|v1〉 = cosθ|00〉−sinθ|11〉; |v2〉 = |01〉; |v3〉 = |10〉, (3.70)

with corresponding eigenvalues λ1 = 1− bcscθsecθ and λ2 = λ3 = c. The maximum

probability of accepting a state orthogonal to |ψ〉, q, can then be written

q = ‖Π〈Ω〉Π‖ =max{λ1,λ2}, (3.71)

where Π= 1−|ψ〉〈ψ|. Therefore, any reasoning about q can be reduced to reasoning

about the pair (λ1,λ2).

(iv) Restriction from convexity arguments

We will show that it suffices to only consider a single term of the form 〈1−ρk⊗σk〉 in

the decomposition of Ω. We write a strategy of this form as

Ω=αP+
ZZ + (1−α)〈1−ρ⊗σ〉. (3.72)

For the term 〈1−ρ⊗σ〉, we have a constraint on the trace; if we label the eigenvalues

for this term as λ(3)
1 and λ(3)

2 , we have the constraint that 1+λ(3)
1 +2λ(3)

2 = tr〈1−ρ⊗σ〉 =
3⇒λ(3)

2 = 1− λ(3)
1
2 . The locus of points satisfying this constraint is plotted in the (λ1,λ2)

plane as the thick black line in Fig. 3.1. Moreover, we will show that a single term

of this form can achieve any valid choice of λ(3)
1 on this locus (which we defer until we

have an explicit parameterisation of terms of this type; see Eq. 3.84, below).

However, we also have an additional constraint derived from insisting that the

strategy remains local. For example, the point (0,1) in the (λ1,λ2) plane represents

the strategy Ω = 1− |v1〉〈v1|, which corresponds to the strategy where the verifier
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projects onto |v1〉 and accepts if the outcome is not |v1〉. But this type of measurement

is operationally forbidden as |v1〉 is entangled.

It can be readily checked that, for an arbitrary θ, it is not possible to cover the

full locus in the range 0 ≤ λ1 ≤ 1 with a separable strategy; instead, there is a fixed

lower bound on λ(3)
1 . To see this, write

〈1−ρ⊗σ〉 = |ψ〉〈ψ|+λ(3)
1 |v1〉〈v1|+

2−λ(3)
1

2
(|v2〉〈v2|+ |v3〉〈v3|). (3.73)

Then, taking just the 〈ρ⊗σ〉 part and expressing as a matrix in the computational

basis gives

〈ρ⊗σ〉 =


(1−λ(3)

1 )cos2θ 0 0 (λ(3)
1 −1)cosθsinθ

0 λ(3)
1
2 0 0

0 0 λ(3)
1
2 0

(λ(3)
1 −1)cosθsinθ 0 0 (1−λ(3)

1 )sin2θ

 . (3.74)

To enforce separability it is necessary and sufficient to check positivity under partial

transposition, yielding the constraint λ(3)
1 −(1−λ(3)

1 )sin(2θ)≥ 0. Simple rearrangement

gives a lower bound that must be satisfied for the strategy to remain separable:

λ(3)
1 ≥ sin(2θ)

1+sin(2θ)
:=λLB. (3.75)

This additional locality constraint rules out any point on the black line to the left

of the red point in Fig. 3.1. The term P+
ZZ has parameters λZZ

1 = 1, λZZ
2 = 0 and so

represents a single point in the (λ1,λ2) plane. Thus the parameters (λ1,λ2) for the

full strategy Ω must be represented by a point in the convex hull of the single point

representing the P+
ZZ term and the locus of points representing the trace 3 part - i.e.

in the unshaded region in Fig. 3.1.

We now show that a strategy that includes more trace 3 terms cannot improve on

the performance of the strategy above. Write this expanded strategy as

Ω′ =αP+
ZZ + (1−α)〈∑

k
ηk(1−ρk ⊗σk)〉, (3.76)

for
∑

k ηk = 1. Firstly, we note again that the averaging operations (SWAP,

conjugation via Mζ and complex conjugation in the standard basis) are distributive

over addition and so we can make the replacement

Ω′ =αP+
ZZ + (1−α)

∑
k
ηk〈1−ρk ⊗σk〉. (3.77)

Write the composite term
∑

k ηk〈1−ρk ⊗σk〉 :=Ωcomp, with parameters λcomp
1 and

λ
comp
2 . Note that each term in Ωcomp satisfies both the constraint from the trace and
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the constraint from PPT in Eq. 3.75, and hence so does Ωcomp. Now, each operator in

this term shares the same eigenbasis (namely, the set of states {|vi〉} in Eq. 3.70).

Thus we know that λ
comp
1 = ∑

k ηkλ1,k, and likewise for λ
comp
2 ; i.e. the strategy

parameters for this composite term are just a convex combination of those for its

constituent parts. A term Ωcomp is then specified in the (λ1,λ2) plane by a point

Pcomp = (λcomp
1 ,λcomp

2 ) ∈ Conv(λ1,k,λ2,k) (i.e. the point Pcomp must lie on the thick

black line bounding the unshaded region in Fig. 3.1).

Thus we know that Conv(Ω′)⊆Conv(Ω), and so any strategy writable in the form

in Eq. 3.76 can be replaced by a strategy of the form in Eq. 3.72 with identical

parameters (λ1,λ2), and hence identical performance. Thus, we need only consider

strategies of the form

Ω=αP+
ZZ + (1−α)〈1−ρ⊗σ〉. (3.78)

(v) Parameterisation and optimisation of the remaining strategy

We can now be explicit about the form of the above strategy. For Ω to accept |ψ〉 with

certainty, ρ⊗σ must annihilate |ψ〉 and so we make the replacement ρ⊗σ = |τ〉〈τ|,
where |τ〉 is the most general pure product state that annihilates |ψ〉. To be explicit

about the form of the state |τ〉, write a general two-qubit separable state as

|τ〉 = (cosφ|0〉+ eiη sinφ|1〉)⊗ (cosξ|0〉+ eiζ sinξ|1〉), (3.79)

where we take 0 ≤ φ,ξ≤ π
2 , without loss of generality. The constraint that this state

annihilates |ψ〉 = sinθ|00〉+cosθ|11〉 is

cosφcosξsinθ+ e−i(η+ζ) sinφsinξcosθ = 0. (3.80)

If either φ = 0 or ξ = 0, then cosφcosξsinθ = 0 implying that ξ = π
2 or φ = π

2 ,

respectively. This yields the annihilating states |τ〉 = |01〉 and |τ〉 = |10〉, respectively.

If φ,ξ 6= 0 then from the imaginary part of Eq. 3.80 we find that e−i(η+ζ) = −1. Then

we can rearrange to give

tanφtanξ= tanθ. (3.81)

Using this constraint and the identities

cosξ= 1√
1+ tan2 ξ

; sinξ= tanξ√
1+ tan2 ξ

, (3.82)

we can eliminate ξ to yield

|τ〉 = (cosφ|0〉+ eiη sinφ|1〉)⊗

 tanφ√
tan2φ+ tan2θ

|0〉− e−iη tanθ√
tan2φ+ tan2θ

|1〉

 . (3.83)
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Note that, for 0< θ < π
2 , taking the limits φ→ 0 and φ→ π

2 we recover the cases |τ〉 =
|01〉 and |τ〉 = |10〉, up to irrelevant global phases. Thus we can proceed without loss

of generality by assuming that ρ⊗σ= |τ〉〈τ|, where |τ〉 is given by Eq. 3.83. Averaging

over the symmetries of |ψ〉 outlined above then yields the following expression:

〈ρ⊗σ〉 = 1
t2φ+ t2θ


s2φ 0 0 −s2φtθ

0 1
2
(
c2φt2θ+ s2φt2φ

)
0 0

0 0 1
2
(
c2φt2θ+ s2φt2φ

)
0

−s2φtθ 0 0 s2φt2θ

 ,

(3.84)

using the shorthand s, c, t for sin, cos and tan, respectively. Given this explicit

parameterisation we can extract the eigenvalue λ(3)
1 :

λ(3)
1 = 1− sec2θsin2φ

tan2θ+ tan2φ
. (3.85)

It can be shown by simple differentiation w.r.t. φ that, for fixed θ, this expression

has a minimum at λ(3)
1 = λLB. Also, this expression is a continuous function of φ and

therefore can take any value up to its maximum (namely, 1). Hence a single trace

3 term is enough to achieve any point in the allowable convex hull in Fig. 3.1. For

convenience we will denote tan2φ = P, tan2θ = T for 0 ≤ P ≤ ∞, 0 < T < ∞. The

explicit form for the whole strategy is then

Ω=


T+P(P+T+α)
(1+P)(P+T) 0 0 (1−α)P

p
T

(1+P)(P+T)

0 (1−α)(T+2P+P2+2PT)
2(1+P)(P+T) 0 0

0 0 (1−α)(T+2P+P2+2PT)
2(1+P)(P+T) 0

(1−α)P
p

T
(1+P)(P+T) 0 0 T+P(1+P+αT)

(1+P)(P+T)

 . (3.86)

We now optimise over the two remaining free parameters, {α,φ} (or alternatively,

{α,P}) for fixed θ (or fixed T). This optimisation is rather straightforward from

inspection (see Fig. 3.2), and the reader may wish to skip to the answer in Eq. 3.93.

However, we include an analytic proof for the sake of completeness. We have shown

that it suffices to consider the eigenvalues λ1 and λ2, given in this case by the

expressions

λ1(α,P,T)= 1− P(1−α)(1+T)
(1+P)(P +T)

; λ2(α,P,T)= (1−α)
[
1− T +P2

2(1+P)(P +T)

]
. (3.87)

The parameter q is given by the maximum of these two eigenvalues. Note that, if P =
0, the expression λ1(α,0,T)= 1 which implies that the adversary can pick a state that

the verifier always accepts, and hence the strategy fails. Likewise, taking the limit

limP→∞λ1(α,P,T) = 1. Thus we must restrict to the range 0 < P < ∞ to construct

a viable strategy for the verifier. The quantity q is minimised for fixed T when the
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derivatives with respect to P and α vanish. First, we calculate the derivatives w.r.t.

α:
∂λ1

∂α
= P(1+T)

(1+P)(P +T)
;

∂λ2

∂α
= −(2P +P2 +T +2PT)

2(1+P)(P +T)
. (3.88)

Given that P > 0 and T > 0, we have that for any choice of T, ∂αλ1 > 0 and ∂αλ2 < 0.

Thus, one of three cases can occur: (a) for a given choice of T and P, the lines given

by λ1 and λ2 intersect in the range 0 ≤ α ≤ 1 and hence there is a valid α such that

q is minimised when λ1 = λ2; (b) for a given choice of T and P, λ1 > λ2 in the range

0 ≤ α ≤ 1 and hence q is minimised when α = 0; (c) for a given choice of T and P,

λ1 < λ2 in the range 0 ≤ α ≤ 1 and hence q is minimised when α = 1. However, we

note that this final case cannot occur; it suffices to check that λ1(α = 1) > λ2(α = 1),

and from the expressions in Eq. 3.87 we have that λ1(α= 1)= 1 and λ2(α= 1)= 0. As

a visual aid for the remaining two cases, see Fig. 3.2. In case (a),

q =λ1 =λ2 = 1
2
+ 1

2

(
T +P2

T +P2 +4P(1+T)

)
. (3.89)

In case (b), we have that

q =λ1(0,P,T)= T +P2

(1+P)(P +T)
. (3.90)

We must also minimise w.r.t. φ; however, we can safely minimise w.r.t. P as ∂φP > 0

(unless φ= 0, but in this case q = 1 and the strategy fails). In case (b), we have

∂q
∂P

= (P2 −T)(1+T)
(1+P)2(P +T)2 . (3.91)

In this case, consider the two points implicitly defined by the constraint λ1(0,P,T)=
λ2(0,P,T) (drawn as the black points in Fig. 3.2). Denote these points f ±(T). It

can be readily checked that in case (b), ∂P q < 0 for any q < f −(T), and ∂P q > 0 for

any q > f +(T). Thus the minimum w.r.t P must occur when λ1(0,P,T) = λ2(0,P,T)

and hence we can restrict our attention to case (a) (note Fig. 3.2). In this case, ∂P q

becomes
∂q
∂P

= −2(1+T)(T −P2)
[T +4PT +P(4+P)]2 = 0, (3.92)

which implies that P = p
T. Substituting in the optimal choices for the parameters

{α,P} and re-expressing solely in terms of θ gives the optimal strategy

Ωopt = 2−sin(2θ)
4+sin(2θ)

P+
ZZ + 2(1+sin(2θ))

4+sin(2θ)
Ω

opt
3 , (3.93)

where Ωopt
3 is given by

Ω
opt
3 =1− 1

(1+ t)2


1 0 0 −t

0 t 0 0

0 0 t 0

−t 0 0 t2

 , t = tanθ. (3.94)
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Figure 3.1: Shaded region: unreachable
parameters given a strategy Ω that is
both local and of the form Ω = αP+

ZZ +
(1−α)Ω3, where Ω3 is the trace 3 part.
Here, θ = π

8 .
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Figure 3.2: A contour map of the function
q(α,φ) = max{λ1(α,φ),λ2(α,φ)} for θ = π

8 ,
where the pair (λ1,λ2) are given in 3.87.
The pink curve denotes the minimum
w.r.t α given fixed φ. Above the curve,
λ1 >λ2; below, λ1 <λ2.

This strategy accepts an orthogonal state with probability

qopt = 2+sin(2θ)
4+sin(2θ)

, (3.95)

implying that the number of measurements needed to verify to within accuracy ε and

with statistical power 1−δ under this test is

nopt = lnδ−1

ln((1−∆ε)−1)
= lnδ−1

ln((1−ε(1− qopt))−1)
≈ (2+sinθ cosθ)ε−1 lnδ−1. (3.96)

The final step is to decompose the operator Ωopt
3 into a small set of local, projective

measurements. We can do so with a strategy involving only three terms:

Ω
opt
3 = 1

3

[
3∑

k=1
(1−|φk〉〈φk|)

]
, (3.97)

where the set of separable states {|φk〉} are the following:

|φ1〉 =
(

1p
1+ tanθ

|0〉+ e
2πi
3p

1+cotθ
|1〉

)
⊗

(
1p

1+ tanθ
|0〉+ e

πi
3p

1+cotθ
|1〉

)
, (3.98)

|φ2〉 =
(

1p
1+ tanθ

|0〉+ e
4πi
3p

1+cotθ
|1〉

)
⊗

(
1p

1+ tanθ
|0〉+ e

5πi
3p

1+cotθ
|1〉

)
, (3.99)

|φ3〉 =
(

1p
1+ tanθ

|0〉+ 1p
1+cotθ

|1〉
)
⊗

(
1p

1+ tanθ
|0〉− 1p

1+cotθ
|1〉

)
, (3.100)

which gives a strategy of the required form.
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measurements needed to verify the
state

∣∣ψ〉 = sinθ |00〉 + cosθ |11〉, as a
function of θ, using the optimal strategy.
See Eq. 3.54. Here, 1 − ε = 0.99 and
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Figure 3.4: A comparison of the total
number of measurements required to
verify up to fidelity 1− ε for the strategy
derived here, versus the known bounds
for estimation up to fidelity 1− ε using
non-adaptive tomography in [213] and
the fidelity estimation protocol in [84],
and the globally optimal strategy given
by projecting onto

∣∣ψ〉
. Here, 1−δ = 0.9

and θ = π
8 .

We now briefly treat the special cases that were omitted from the above proof: θ =
0, π4 , π2 . In these cases, |ψ〉 admits a wider choice of measurements that accept with

certainty.

θ = 0,θ = π
2 : In these cases, the state |ψ〉 = |00〉 or |ψ〉 = |11〉. Then the globally

optimal strategy, just projecting onto |ψ〉, is an allowed local measurement. Thus in

these cases the optimal strategy is to just apply the projector |00〉〈00| or |11〉〈11|.
Given this strategy we have that p = 1 and q = 0, giving a scaling of the number of

measurements required as

nopt ≈ ε−1 lnδ−1. (3.101)

θ = π
4 : This case is treated explicitly in § 3.3. The optimal strategy is to perform the

Pauli measurements X X , −Y Y and ZZ with equal weight; i.e.

Ω= 1
3

(P+
X X +P+

−Y Y +P+
ZZ), (3.102)

where P+
M is the projector onto the positive eigensubspace of the operator M. In this

case, the number of measurements required is

nopt ≈ 3
2
ε−1 lnδ−1. (3.103)
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We note that this leads to a discontinuity in the number of measurements needed

as a function of θ, for fixed ε (as seen in Fig. 3.3). This arises since our strategies are

designed to have the optimal scaling
(
O

(1
ε

))
for fixed θ, achieved by having strategies

that accept |ψ〉 with probability 1.

As for scaling, in Fig. 3.4 the number of measurements required to verify a

particular two-qubit state of this form, for three protocols, is shown. The optimal

protocol derived here gives a marked improvement over the previously published

bounds for both tomography [213] and fidelity estimation [84] for the full range of ε,

for the given values of θ and δ. The asymptotic nature of the advantage for the

protocol described here implies that the gap between the optimal scheme and

tomography only grows as the requirement on ε becomes more stringent. Note also

that the optimal local strategy is only marginally worse than the best possible

strategy of just projecting onto |ψ〉.

3.5 Verifying stabilizer states

We now discuss verification strategies for stabilizer states. We take |ψ〉 to be a

stabilizer state of N qubits, namely that there exists a generating set of N

commuting Pauli operators M1, . . . , MN on N qubits such that Mi|ψ〉 = |ψ〉 for all i.

Stabilizer states are ubiquitous in various areas of quantum information, for

example in quantum error correction and measurement-based quantum computing;

for an introduction to the stabilizer formalism, see [90, 89] and [170], § 10.5. We will

describe below a strategy constructed from only stabilizer measurements that

accepts |ψ〉 with certainty, and hence achieves the same asymptotic scaling in the

number of required measurements with respect to ε as the two-qubit case above.

However, we do not rule out that there may be non-stabilizer strategies that give a

small constant factor improvement over the strategy defined here.

Theorem 19. Write a stabilizer state |ψ〉 and strategy Ω = ∑K
j=1µ jP j, where the set

{P j} are the projectors onto the positive eigenspace of K linearly independent stabilizers

of |ψ〉, for K ≤ 2N −1. Then the optimal choice of the parameter K and weights µ j are

K = 2N−1; µ j = 1
2N−1 for all j. The number of measurements needed to verify to within

fidelity ε and statistical power 1−δ is then

nstab
opt ≈ 2N −1

2(N−1) ε
−1 ln

1
δ

. (3.104)

Proof. Recall that as the verifier accepts |ψ〉 with certainty, we are concerned with
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the optimisation of ∆ε, which can be written as

∆ε =max
Ω

min
|ψ⊥〉

ε(1−〈ψ⊥|Ω|ψ⊥〉) (3.105)

= ε(1−min
Ω

max
|ψ⊥〉

〈ψ⊥|Ω|ψ⊥〉), (3.106)

where the maximisation is over positive matrices Ω such that Ω|ψ〉 = |ψ〉.
Now consider Ω written as a matrix in the basis {|ψ〉, |ψ⊥

j 〉}, j = 1. . . (2N −1) where

the states |ψ⊥
j 〉 are mutually orthogonal and all orthogonal to |ψ〉. Given that Ω|ψ〉 =

|ψ〉, we know that 〈ψ⊥
j |Ω|ψ〉 = 0∀ j. Then in this basis Ω can be written

Ω=
(
1 0>

0 M

)
, (3.107)

where 0 is the (2N−1)-dimensional zero vector and M is a (2N−1)×(2N−1) Hermitian

matrix. Then Ωmust be writable as Ω= |ψ〉〈ψ|+∑2N−1
j=1 ν j|φ j〉〈φ j|, where

∑
j ν j|φ j〉〈φ j|

is the spectral decomposition of M. Given this decomposition, the optimisation for the

adversary is straightforward – pick |ψ⊥〉 to be the eigenstate in the decomposition of

M with largest eigenvalue: |ψ⊥〉 = |φmax〉 where νmax =max j ν j. Then

∆ε = ε(1−min
Ω

〈φmax|Ω|φmax〉)= ε(1−min
Ω

νmax). (3.108)

Given this choice by the adversary, the verifier is then forced to set the strategy such

that all the eigenvalues of M are equal; i.e. that M = a1 for some constant a. To

see this, consider an alternative strategy where the eigenvalues ν j are not equal.

Now, consider rewriting Ω in terms of stabilizers of |ψ〉. For any stabilizer (i.e. tensor

product of Paulis, perhaps with an overall phase) M over N qubits, the projector onto

the positive eigensubspace has tr(P+
M) = 2N−1. Given that Ω is built from a convex

combination of these projectors, and recalling from Lemma 17 thatΩ does not contain

an identity term, we also know that tr(Ω) = 2N−1. However, we have also expanded

Ω as Ω= |ψ〉〈ψ|+∑
j ν j|φ j〉〈φ j|, and so

tr(Ω)= 1+∑
j
ν j = 2N−1. (3.109)

Then, it is straightforward to see that decreasing any eigenvalue below a must result

in an increase in at least one other eigenvalue in order to maintain this equality, and

hence would increase the value of νmax. Thus the optimal choice for the verifier is to

set Ω = |ψ〉〈ψ|+a1⊥, where 1⊥ is the identity matrix on the subspace orthogonal to

|ψ〉. Taking the trace of this expression gives

tr[|ψ〉〈ψ|+a1⊥]= 1+ (2N −1)a = 2N−1. (3.110)
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This can be rearranged for a and then substituted into the expression for ∆ε, which

gives

∆ε = 2(N−1)

2N −1
ε, (3.111)

or that the number of stabilizer measurements required to verify |ψ〉 is bounded

below by

nstab
opt ≈ 2N −1

2(N−1) ε
−1 lnδ−1. (3.112)

The optimal Ω = |ψ〉〈ψ| + 2(N−1)−1
2N−1 1⊥ and the optimal scaling above can be achieved

by decomposing Ω into a strategy involving a maximal set (excluding the identity) of

2N −1 linearly independent stabilizers, all with equal weight. To see this note that

for a stabilizer group of a state |ψ〉 of N qubits, there are 2N linearly independent

stabilizers (including the identity element). Denote these stabilizers {Mi, i = 1. . .2N }.

Then, we make use of the fact that [110]

1
2N

2N∑
i=1

Mi = |ψ〉〈ψ|. (3.113)

Explicitly extracting the identity element gives

2N−1∑
i=1

Mi = 2N |ψ〉〈ψ|−1. (3.114)

Now, each stabilizer (for any N) is a two outcome measurement and so we can make

use of the fact that Mi can be written in terms of the projector onto the positive

eigenspace of Mi, denoted P+
i , as Mi = 2P+

i −1. Substituting in this expression and

rearranging gives
2N−1∑
i=1

P+
i = 2(N−1)|ψ〉〈ψ|+ (2(N−1) −1)1. (3.115)

Then normalising this expression over 2N −1 stabilizers yields

1
2N −1

2N−1∑
i=1

P+
i = 2(N−1)

2N −1
|ψ〉〈ψ|+ 2(N−1) −1

2N −1
1

= 2(N−1) +2(N−1) −1
2N −1

|ψ〉〈ψ|+ 2(N−1) −1
2N −1

1⊥

= |ψ〉〈ψ|+ 2(N−1) −1
2N −1

1⊥ =Ω, (3.116)

where 1⊥ is the identity matrix on the subspace orthogonal to |ψ〉, as required.

Note that for growing N, the quantity nstab
opt given in Eq. 3.112 is bounded above

by 2ε−1 lnδ−1, which does not depend on N, and implies that this stabilizer strategy

requires at most a factor of two more measurements than the optimal non-local

verification strategy (just projecting onto |ψ〉).
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One could also consider a reduced strategy that involves measuring fewer

stabilizers. However, given a state of N qubits and a set of k stabilizers, the

dimension of the subspace stabilized by this set is at least 2N−k. Thus for any choice

of k < N, there must always exist at least one state |ψ⊥〉 orthogonal to |ψ〉 that is

stabilized by every stabilizer in the set. Then, the adversary can construct a σ that

always accepts, implying that the verifier has no discriminatory power between |ψ〉
and σ and thus the strategy fails. Consider instead constructing a strategy from the

N stabilizer generators of |ψ〉, with corresponding projectors {Ps.g.
j }. Then,

Ω = ∑
jµ jP

s.g.
j . The set of projectors {Ps.g.

j } commute and so share a common

eigenbasis, denoted {|λ j〉}. To optimise this strategy over the weights µ j, we first

need the following lemma:

Lemma 20. Write the unique sets of N −1 independent stabilizer generators of |ψ〉,
Sk = {M j, j = 1. . . N} \ Mk, k = 1. . . N. Then each Sk corresponds to a state |λk〉,
〈λk|ψ〉 = 0, such that 〈λk|λl〉 = δkl .

Proof. Each set Sk stabilizes a space of dimension two, and so a |λk〉 where 〈λk|ψ〉 = 0

exists. Moreover, the stabilizer generators define an orthogonal eigenbasis of which

|λk〉 is an element. To show that two sets Sk and Sl , k 6= l, define distinct eigenvectors,

assume the converse; that |λk〉 ∝ |λl〉. However, then the set S = Sk ∪ Sl would

stabilize |λk〉, which is a contradiction as S is the full set of stabilizer generators and

uniquely stabilizes |ψ〉.

We can now derive the optimal stabilizer generator strategy.

Theorem 21. For a stabilizer state |ψ〉 and strategy Ω = ∑N
j=1µ jP

s.g.
j , where the set

{Ps.g.
j } are the projectors onto the positive eigenspace of the stabilizer generators of |ψ〉,

the optimal choice of the weights µ j is µ j = 1
N , for all j. The number of measurements

needed to verify to within fidelity ε and statistical power 1−δ is then

ns.g.
opt ≈

N
ε

ln
1
δ

. (3.117)

Proof. If we write a state orthogonal to |ψ〉 in the stabilizer eigenbasis as |ψ⊥〉 =∑
kαk|λk〉, we have that

〈ψ⊥|Ω|ψ⊥〉 =
2N∑

k,m=1

N∑
j=1

ᾱkαmµ j〈λk|Ps.g.
j |λm〉

=
2N∑

k,m=1

N∑
j=1

ᾱkαmµ jδkmε jk

=
2N∑
k=1

N∑
j=1

|αk|2µ jε jk :=
2N∑
k=1

|αk|2Ek, (3.118)
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where ε jk = 1 if P j|λk〉 = |λk〉 and zero otherwise. This quantity is the parity-check

matrix for the set of stabilizers {Ps.g.
j }. The quantity of interest with respect to

verification is

q =min
Ω

max
|ψ⊥〉

〈ψ⊥|Ω|ψ⊥〉 =min
µ j

max
αk

∑
j,k

|αk|2µ jε jk, (3.119)

where the verifier’s minimisation is over the probabilities µ j with which a stabilizer

generator indexed by j is drawn in the protocol, and the adversary maximises over

the set of amplitudes αk that describes the state most likely to fool the verifier.

Lemma 20 gives that, from the full set of 2N basis states |λk〉, there is a subset of N

basis states |λk̃〉, k̃ ∈ I for |I| = N, stabilized by exactly N −1 generators; thus for

basis states in this subset, the quantity ε jk̃ = 1− δ jk̃. Then we can compute the

summation over j as

E k̃ =
∑

j
µ jε jk̃ =

∑
j
µ j(1−δ jk̃)= 1−µk̃, (3.120)

using the fact that
∑

jµ j = 1. Now, each element of Ek for k ∉ I is a summation of at

most N−2 terms, µ j. Thus there always exists another element E k̃ for k̃ ∈ I that is at

least as large; and so it is never detrimental to the adversary to shift any amplitude

on the basis state labelled by k to the basis state labelled by k̃. Thus the optimal

choice for the adversary’s state is |ψ⊥〉 ∈ span{|λk̃〉 : k̃ ∈ I}. Given this choice by the

adversary, we have that

q =min
µk̃

max
αk̃

∑
k̃
|αk̃|2(1−µk̃)=min

µk̃
max

k̃
(1−µk̃). (3.121)

It is straightforward to see that the optimal choice for the verifier is to have µk̃ = 1
N ,

for all k̃; then Ω= 1
N

∑
Ps.g.

j . Thus

q = 1− 1
N

⇒ ns.g.
opt ≈

N
ε

ln
1
δ

. (3.122)

In this case, the number of required measurements is ns.g.
opt ≈ Nε−1 lnδ−1, with

this bound saturated by measuring all stabilizer generators with equal weight.

Conversely, constructing a measurement strategy from the full set of 2N −1 linearly

independent stabilizers requires a number of measurements nstab
opt ≈ 2N−1

2(N−1) ε
−1 lnδ−1,

again with this bound saturated by measuring each stabilizer with equal weight. So

clearly, this scaling is much poorer in N than in the case where the full set of 2N −1

linearly independent stabilizers are allowed. For growing N, the latter expression

for the number of measurements is bounded from above by 2ε−1 lnδ−1, which implies

that there is a local strategy for any stabilizer state, of an arbitrary number of

qubits, which requires at most twice as many measurements as the optimal
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non-local strategy. Note that this strategy may not be exactly optimal; for example,

the state |00〉 is also a stabilizer state, and in this case applying the measurement

|00〉〈00| is both locally implementable and provably optimal. Thus, the exactly

optimal strategy may depend more precisely on the structure of the individual state

itself. However, the stabilizer strategy is only inferior by a small constant factor. In

comparison to the latter strategy constructed from every stabilizer, the former

strategy constructed from only the N stabilizer generators of |ψ〉 has scaling that

grows linearly with N. Thus there is ultimately a trade-off between number of

measurement settings and total number of measurements required to verify within

a fixed fidelity.

3.6 “Soft” verification

One reasonable complaint about the verification game outlined above is that it does

not take into account systematic error; i.e. even if the state produced is not far from

the target, it may be the case that there is some small systematic error that rules out

the ability of the verifier to verify to within an arbitrarily small fidelity. In particular,

one could generalise to a “soft” verification scenario where the state is promised to

be either (a) within some small ball around the target; or (b) outside some larger ball

around the target, and the verifier must decide which. If we take a target state |ψ〉,
experimental outputs ρ i, and adversarial states σi, then the aim is to distinguish

between the following scenarios:

1. (Good) For the ith run the source outputs ρ i, for 〈ψ|ρ i|ψ〉 = 1−ε′i ≥ 1−ε′;

2. (Bad) For the ith run the source outputs σi, for 〈ψ|σi|ψ〉 = 1−εi ≤ 1−ε.

Here ε′ is a measure of the systematic error; if ε′ = 0 then the protocol is as

previously defined. Clearly, if ε′ ≥ ε then the protocol must fail, regardless of the

choice of strategy by the verifier - the adversary can then pick σi = argmaxρ j
ε′j, ∀i,

rendering the two hypotheses indistinguishable. We seek to explore the other case,

i.e. when ε′ < ε; in particular, how close the quantities can get before the protocol

fails.

In both the two-qubit case in § 3.2.4 and the stabilizer case in § 3.5, the strategy

Ω had the property that Ω= (1−q)|ψ〉〈ψ|+q1, for a parameter q corresponding to the

probability of a verifier being fooled by a state orthogonal to |ψ〉. Then the probability

of passing trial i in the “good” case is

tr(Ωρ i)= (1− q)tr(|ψ〉〈ψ|ρ i)+ q = 1−ε′i(1− q), (3.123)
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Figure 3.5: A comparison of the relative entropy in the “soft” verification scenario
(solid lines) with the first-order approximation (dashed lines). The parameter β is
the ratio between the sizes of the infidelity “ball” around the target state in the
“good” and “bad” instances. The approximation aligns closely with the true value
for a reasonable range of ε.

and likewise the probability of passing in the “bad” case is 1− εi(1− q). Then the

number of copies required to distinguish these two cases is governed by the relative

entropy, which in the worst case is bounded by

D(1−ε′i(1− q)‖1−εi(1− q))≥ D(1−ε′(1− q)‖1−ε(1− q)). (3.124)

For readability, we’ll absorb the constant factor of 1− q and define ε̄ := ε(1− q), and

likewise for ε′. Also, we are interested in what happens when ε′ gets close to ε, so let

β= ε′/ε, for 0≤β< 1. Then the worst-case relative entropy can be rewritten

D(1−βε̄‖1− ε̄)= (1−βε̄) ln
1−βε̄
1− ε̄ +βε̄ lnβ. (3.125)

Assuming an experiment designed to produce high-fidelity states, we can Taylor

expand this expression around ε̄= 0 to give

D(1−βε̄‖1− ε̄)≈ (1−β+β lnβ)ε̄+O(ε̄2). (3.126)

Taking this series to first order in ε̄ gives a very close approximation to the relative

entropy, across the entire range of β; see Fig 3.5. Additionally, we can see from

Fig. 3.5 that the first-order approximation gives a relatively tight lower bound for the
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relative entropy, and hence yields an upper bound on the required number of trials.

Thus the number of copies needed to verify in this “soft” scenario is

n = 1
D(1−βε̄‖1− ε̄) ln

1
δ
≤ 1

1−β+β lnβ
· 1
(1− q)ε

ln
1
δ

. (3.127)

Thus the only difference in complexity between the “soft” scenario and that previously

discussed is the prefactor (1−β+β lnβ)−1. In the limit where β→ 0, the ball around

the target state reduces to a point, this prefactor tends to 1, and we recover the

scaling for the previous scenario as expected. In the limit where β → 1, the ball

around the target state in the “good” case approaches the ball around the target state

in the “bad” case, and the prefactor blows up.

3.7 Verification of arbitrary pure states

The goal of this section is to outline approaches to extending the protocol in § 3.2.4

and § 3.5 to arbitrary pure target states of N qubits.

In contrast to the two-qubit case, there are now three parameters defining the

scaling of the number of copies needed to verify a particular pure state |ψ〉 ∈Cd: the

confidence δ, the infidelity ε and the number of qubits of the target, N = log2(d).

Typical verification procedures require a number of copies scaling like

n = f (N)
εk log

1
δ

, (3.128)

for some non-decreasing function f (N) and integer k. See Table 2.3 for examples

using different verification procedures, including various flavours of tomography. For

N fixed, we know that we can achieve a quadratic improvement in ε with strategies

where every measurement accepts |ψ〉 with certainty, over those that do not have this

property. However, for N growing this may not be the optimal strategy; for example,

we might prefer a strategy that scales like 1
ε2 if the alternative scales like 2N

ε
(for

large enough N).

The approaches we take are outlined as follows: in § 3.7.1, we derive projector

rank constraints on strategies that accept |ψ〉 with certainty; in § 3.7.2 we derive a

lower bound on the copy complexity when the strategy is constructed from rank 1

projectors; in § 3.7.3 we discuss the shortcomings of directly extending the approach

that we took for arbitrary two qubit states; and in § 3.7.4 we outline an ansatz

strategy for arbitrary pure states.

3.7.1 Strategy constraints when the target state is accepted with
certainty

The first question one might ask is: can we achieve the same scaling with N and ε as

in the globally optimal strategy (projecting onto |ψ〉), n = 1
ε

log 1
δ
, with local
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measurements? We know that to achieve this scaling with ε, we must constrain the

strategy so that it always accepts |ψ〉 with certainty. Given this constraint, we can

write Ω in its eigenbasis as

Ω= |ψ〉〈ψ|+
2N−1∑
j=1

ν j|ψ⊥
j 〉〈ψ⊥

j |. (3.129)

Previously, we have sought out strategies where ν j = q, for all j, as this is always

favourable to the verifier given access to a strategy of fixed rank. q is then the

probability that a verifier accepts a state orthogonal to |ψ〉. Then

Ω= |ψ〉〈ψ|+ q
2N−1∑
j=1

|ψ⊥
j 〉〈ψ⊥

j |. (3.130)

It is straightforward to show that the goal of a verifier under these constraints is to

seek out a valid strategy composed of projectors of smallest possible rank.

Observation 22. If Ω=∑
jµ jP j is of the form in Eq. 3.130, then for max j tr(P j)= T,

we have that the number of copies is bounded by

n.
2N −1
2N −T

· 1
ε

log
1
δ

. (3.131)

Proof. The strategy is a convex combination of projectors Ω = ∑
kµkPk with trace

tr(Pk)≤ T, so trΩ≤ T. Then taking the trace of Eq. 3.130 gives a relation between q

and T:

tr(Ω)= 1+ q(2N −1)≤ T ⇒ q ≤ T −1
2N −1

. (3.132)

Then, the number of copies needed to verify is

n = 1
1− q

· 1
ε

log
1
δ
≤ 2N −1

2N −T
· 1
ε

log
1
δ

. (3.133)

Thus the scaling with N in this simplified case is dictated by the trace of the

projectors in the strategy only (with lower trace yielding a better scaling).

Example 1: if T is a constant independent of N, then

2N −1
2N −T

= 1+ T −1
2N −T

, (3.134)

which asymptotically approaches the scaling for the globally optimal strategy

(exponentially quickly).

Example 2: if T = 2N−1 (e.g. in the case of stabilizer measurements), then

2N −1
2N −T

= 2N −1
2N −2N−1 = 2N −1

2N−1 = 2− 1
2N−1 , (3.135)
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which is precisely the result previously derived for stabilizer measurements in § 3.5.

Example 3: if T = 2N −C for some constant C (e.g. for a strategy constructed from

projectors of the form Pk =1−|ηk〉〈ηk|), then

2N −1
2N −T

= 2N −1
C

, (3.136)

which, while offering no marked improvement over tomography and direct fidelity

estimation in terms of scaling with N, still improves the dependence on ε

quadratically. However, Observation 22 is predicated on Eq. 3.130 being satisfied. It

may be the case that a verifier can relax the assumption that ν j = q for all j and

then have enough freedom to construct a strategy that scales favourably even with

high-rank projectors.

3.7.2 A strategy with restricted-rank measurements

Motivated by Observation 22, one may consider constructing a strategy from the

lowest rank (i.e. rank 1) projectors: Ω = ∑
jµ j|η j〉〈η j| for some set of product states

|η j〉. However, in general the target state |ψ〉 will be entangled, we cannot construct

a strategy where every setting accepts the target state with certainty, and we must

forfeit the quadratic advantage in ε. However, we may wish to proceed, hoping for

an advantage in N. In this instance, the strategy Ω is a convex combination of pure

states; i.e. it is a density matrix. Consider an Ω of the form

Ω= 1−∆
2N 1+∆|ψ〉〈ψ|, (3.137)

for some N-qubit target state |ψ〉. The probability that this strategy accepts the

target |ψ〉 is p = 1−∆
2N +∆, and the probability that it accepts a state orthogonal to |ψ〉

is q = 1−∆
2N ; so the probability that the verifier accepts a state ε away from the target is

(1−ε)p+εq = p−∆ε. The requirement that this strategy be decomposable into locally-

implementable projectors is equivalent to the requirement that the density matrix Ω

be separable. Luckily, for any state |ψ〉〈ψ| it is already known that there exists a

range of sufficiently small ∆, such that any choice in this range yields a separable Ω

[32]:

Theorem 23. For a density matrix of the form

ρ∆ = 1−∆
2N 1+∆ρ, (3.138)

ρ∆ is guaranteed to be separable if

0≤∆≤ 1
1+22N−1 . (3.139)
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Assuming that N is sufficiently large, and that ∆ is sufficiently small, we can take

the Taylor expansion of D(p‖p−∆ε) in Eq. 3.23. Then

D(p‖p−∆ε)≈ 2p(1− p)
∆2ε2 = 2(d−1)(1−∆)[1+∆(d−1)]

d2∆2ε2 , (3.140)

for d = 2N . Substituting in the bound for ∆ gives

D(p‖p−∆ε)≤ 2ε2

d(d−1)(d+2)
, (3.141)

and therefore that the number of copies required is bounded by

n ≥ d(d−1)(d+2)
2ε2 log

1
δ

. (3.142)

While Theorem 23 is not constructive, it is instructive to compare to the known

bounds in Table 2.2. The bound on the required number of copies is marginally

better in d than in conventional tomography, when there is no a priori guarantee

that the target state is pure (but marginally worse if this guarantee exists). On the

other hand, this bound offers no advantage over direct fidelity estimation [85].

3.7.3 Extending the two-qubit approach

An obvious avenue to consider when trying to generalise the previous protocol for

arbitrary states of two qubits is to adapt the same proof strategy: (i) enumerate all

possible types of local measurements that could be implemented, as in Eq. 3.55; (ii)

rule out as many as possible that cannot be implemented given the strategy

requirements; (iii) parameterise and optimise over the rest.

We can be more quantitative about step (i). For a state of N qubits, a local

measurement (in the sense we have discussed above) physically corresponds to N

parties, each with a single qubit, able to carry out a two-outcome projective

measurement. Thus the total number of possible different measurement patterns is

2N . Given the set of possible measurement outcome patterns, the parties must

choose a subset of measurement patterns on which to accept the state they have

(and hence, a complement of patterns on which to reject). Each designation from the

set of measurement patterns to “accept” or “reject” is a Boolean function

f : {0,1}N → {0,1}, and so the number of possible types of measurement is upper

bounded by the number of possible Boolean functions over N variables, or 22N
.

However, some of these patterns are physically equivalent. Specifically, each party

has the freedom to “flip” their measurement outcomes (i.e. physically to apply the

complementary projector 1−P, rather than P itself, or mathematically to flip the

input bits to the function f ), without affecting the protocol. Thus the number of

types of measurement of rank T for a state of N qubits, B(T, N), is the number of

70



3.7. VERIFICATION OF ARBITRARY PURE STATES

N
T

0 1 2 3 4 5 6 7 8 · · · Total

1 1 1 1 - - - - - - - 3
2 1 1 3 1 1 - - - - - 7
3 1 1 7 7 14 7 7 1 1 - 46
4 1 1 15 35 140 273 553 715 870 · · · 4336
5 1 1 31 155 1240 6293 28861 105183 330640 · · · 134281216

Table 3.1: The number of physically distinct measurement types of rank T applicable
to a state of N qubits.

inequivalent Boolean functions with T nonzero values, where the equivalence

relation is with respect to action under the “complementary group” (see [103]).

Explicitly,

B(T, N)=



2−N

2N

T

 if T is odd;

2−N

2N

T

+ (2N −1)

2N−1

T
2

 if T is even.

(3.143)

The total number of measurement types for a state of N qubits is

2N∑
T=0

B(T, N)= 22N + (2N −1)22N−1

2N . (3.144)

Numerical values of these expressions for small T and N are shown in Table 3.1.

The upshot is that, while feasible for states of two qubits, it rapidly becomes

impossible (both computationally and numerically) to proceed with the prior proof

strategy for states of more qubits, because the ability to even write down the list of

possible measurement types is computationally intractable. Any successful

approach must impart sufficient prior knowledge about symmetries in the target

state from the outset, in order to strongly reduce the number of possible

measurement types to consider.

3.7.4 An arbitrary state ansatz

Suppose instead that we’d like to maintain the quadratic advantage in ε for the

previously derived strategies in § 3.2.4 and § 3.5, by constructing a strategy from

measurements that always except the target (and we’ll aim to optimise the scaling

of the number of copies with N later). Rather than the axiomatic approach above,

we’ll take the following ansatz: to verify |ψ〉, use measurements {1−|ηi〉〈ηi|, |ηi〉〈ηi|}
where 〈ηi|ψ〉 = 0, for all i, to ensure that p = 1. We need to explicitly construct a set
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|ηi〉 of product states that spans the space orthogonal to |ψ〉, in order for the strategy

to succeed with some non-zero probability. Try the following set of N ·2N−1 states:

|φ jk〉 =SWAP0k{(α∗
jk|0〉+β∗

jk|1〉)⊗| j〉}, (3.145)

where the state | j〉 runs over all 2N−1 computational basis states of N − 1 qubits,

k = 0. . . N−1, and the sets of parameters α jk and β jk are chosen such that 〈φ jk|ψ〉 = 0,

for all j and k. This constraint for each |φ jk〉 is guaranteed to have a solution when

|ψ〉 has support on all computational basis states. If |ψ〉 does not have support on all

computational basis states, then by a result by Montanaro and Shepherd [165] there

is always a subset of qubits which, upon operating with Hadamards, results in a

state which does have support on all computational basis states. Thus we can always

proceed provided that we also remember to conjugate the resultant local strategy

by the same set of Hadamards. We now show that the above ansatz forms a valid

verification strategy for |ψ〉.

Theorem 24. Consider the set of N ·2N−1 states on N qubits:

|φ jk〉 =SWAP0k{(α∗
jk|0〉+β∗

jk|1〉)⊗| j〉}, (3.146)

where j denotes the jth computational basis state over N −1 qubits, j = 0. . .2N−1 −1,

α jk,β jk ∈C, and k = 1. . . N. If the parameters {α jk,β jk} are chosen such that 〈φ jk|ψ〉 =
0 for a state |ψ〉 that has non-zero amplitude on all computational basis states, then

the states |φ jk〉 must also span the space orthogonal to |ψ〉.

Proof. Enforcing that each state |φ jk〉 is orthogonal to |ψ〉 yields N ·2N−1 constraints

of the form

〈φ jk|ψ〉 =α jkψx jk +β jkψx̄ jk = 0, (3.147)

where the string x jk is bit string j with a 0 inserted at position k, and x̄ jk is bit string

j with a 1 inserted at position k. Thus these strings differ only at position k (i.e. have

Hamming distance 1). If we construct a graph G where each vertex is labelled with

ψx jk and an edge is added between vertices if there exists a constraint of the above

form relating their labels, then the resultant graph is an N-dimensional hypercube.

We seek to show that only a single state can satisfy all the constraints in

Eq. 3.147. Alternatively, we can consider a matrix M of dimension (N ·2N−1)× (2N ),

where the rows label the constraints in Eq. 3.147 and the columns label amplitudes

of the state satisfying the constraints; then

M( jk),l =


−ψx̄ jk if x jk = l

ψx jk if x̄ jk = l

0 otherwise.

(3.148)
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Any state |v〉 whose elements satisfy all the constraints in Eq. 3.147 must

equivalently satisfy M|v〉 = 0. Suppose that this is the case; then by checking each

row of M, |v〉 must satisfy

−ψx̄ jk vx jk +ψx jk vx̄ jk = 0. (3.149)

Alternatively, given that all the amplitudes of |ψ〉 are non-zero,

vx jk

ψx jk

= vx̄ jk

ψx̄ jk

. (3.150)

From the graph G, the ratio of two amplitudes of |v〉 is equal to the corresponding

ratio of amplitudes of |ψ〉, provided that their vertices are adjacent. However, we

may transition along a path in G consisting of multiple edges and concatenate ratios;

and given that G is connected, we can reach any vertex from any other. So

vm

ψm
= vn

ψn
, (3.151)

for any choice of m and n in 1. . .2N . Thus |v〉 ∝ |ψ〉, and the state |ψ〉 is the unique

state orthogonal to the set of states {|φ jk〉}.

As for scaling of the number of copies, n, with the number of qubits, N, we can

write the maximum probability of accepting a state orthogonal to |ψ〉 as

q = max
|φ〉

〈φ|ψ〉=0

〈φ|
[

1
N2N−1

N∑
k=1

2N−1∑
j=1

(1−|φ jk〉〈φ jk|)
]
|φ〉 (3.152)

= max
|φ〉

〈φ|ψ〉=0

[
1− 1

N2N−1

N∑
k=1

2N−1∑
j=1

| 〈φ|φ jk〉 |2
]

(3.153)

= 1− 1
N2N−1 min

|φ〉
〈φ|ψ〉=0

N∑
k=1

2N−1∑
j=1

| 〈φ|φ jk〉 |2 (3.154)

:= 1− f (N)
N2N−1 , (3.155)

or that

n = N2N−1

f (N)
· 1
ε

log
1
δ

. (3.156)

The summation in Eq. 3.155, and the quantity f (N), is closely related to the frame

potential for the set of states |φ jk〉 [16]. We can give a straightforward upper bound

for f (N). Note that for some element |φrs〉,

f (N)=min
|φ〉

∑
j,k

| 〈φ|φ jk〉 |2 ≤
∑
j,k

| 〈φrs|φ jk〉 |2. (3.157)

The index k indexes a block of N orthogonal states, and so this overlap vanishes

unless k = s. As for the index j, in the worst case each N-state block will completely
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Figure 3.6: A histogram of the “frame
potential” f (N) for 10000 randomly
chosen three-qubit states.
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Figure 3.7: A histogram comparing the
impact on the “frame potential” f (N)
given a verifier that is allowed to locally
rotate their ansatz by a unitary U =
R̂x(φ)⊗1⊗1.

overlap with all the other blocks, and so the overlap picks up a factor of 1 for all 2N−1

blocks. Thus, f (N)≤ 2N−1. This gives a lower bound for the copy complexity:

n ≥ N
ε

log
1
δ

. (3.158)

As for upper bounds, we would like the scaling in Eq. 3.156 to be as benign as

possible; if we can show that f (N) is either bounded from below by a constant, or

even that it grows with N, this will yield an upper bound on the number of copies

that grows more slowly than N2N−1 and so this arbitrary state ansatz will

outperform the scaling for direct fidelity estimation in terms of both ε and N. We

explored numerically the value of the quantity f (N) for 10000 randomly chosen

three-qubit states, by constructing the states |φ jk〉 for the random state and then

optimising over the adversary’s state, |φ〉. The results are shown in the histogram in

Fig. 3.6. It is clear that our hope is not fulfilled, even for this simple case - while we

know that the ansatz corresponds to a valid verification protocol from Theorem 24,

and so the required number of copies of the state must remain finite, there are

states where the quantity f (N) can be made arbitrarily small. For these states, the

number of required copies can be made arbitrarily large (albeit not infinite).

One procedure that a verifier might take to save this ansatz is to notice that any

local verification strategy can be conjugated by local measurements, and remain a

local verification strategy. Hence a verifier can take a target state |ψ〉 with a small

f (N), conjugate it by a local unitary U |ψ〉 = |ψ′〉, derive the verification strategy via

the ansatz for |ψ′〉, and then conjugate this strategy by U . The resultant strategy is

guaranteed to be a valid verification strategy for |ψ〉, and has a different value for

the frame potential f , in general. To explore the effect of this procedure, for the same
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set of randomly chosen three-qubit states above, we can optimise over a verifier’s

choice of a specifically chosen local unitary U , designed to maximise the quantity

f . We explored the effect of this procedure in a simple case, where the unitary U

was chosen to be U = R̂x(φ)⊗1⊗1 for computational expediency. The outcome of

the verifier optimising over the parameter φ is shown in Fig. 3.7. In this case, this

additional optimisation for the verifier is enough to pull f away from zero, for almost

all randomly chosen three-qubit states. However, it is unclear whether this additional

step can be folded into the ansatz in a straightforward and transparent manner, and

that analytic bounds can then be derived.

3.8 Outlook

We have shown that, if one is sufficiently restrictive about the output of the

verification protocol, that quantum state verification can in principle be much more

efficient than characterising the state completely. For the states we have considered,

the advantage is quadratic in the infidelity ε, and for stabilizer states, also

exponential in the number of qubits N. This advantage can be enormous in practice.

On the other hand, the proofs for deriving this advantage relied on one of two

things: for two-qubit states, that we could efficiently elucidate the most general

verification strategy; and for stabilizer states, that we could exploit the high degree

of symmetry of states of this type. Both of these approaches seem problematic for

deriving efficient verification strategies for arbitrary states. Additionally, the ansatz

for arbitrary pure states that we have considered requires scrutiny if a provable

advantage in copy complexity is to be derived. We have given preliminary numerical

evidence that the frame potential can possibly be bounded away from zero, and that

the copy complexity can then be bounded from above. An analytic proof of this would

be the first step towards an efficient ansatz for arbitrary state verification. On the

other hand, when the state to be verified, |ψ〉, is restricted to be a stabilizer state,

the ansatz reduces to the strategy constructed from stabilizer generators, and not

the more efficient strategy constructed from the full set of linearly-independent

stabilizers. Hence there is some potential leeway to construct more efficient ansätze

for arbitrary state verification.

One may also consider more relaxed frameworks for quantum state verification,

in the same spirit as the “soft” verification scenario. For example, it may be

reasonable to restrict the action of the adversary, given some physically-motivated

context. Alternatively, it may be more analytically tractable to pursue average-case

hardness results for arbitrary pure states, rather than reasoning about every

possible target state |ψ〉.
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C H A P T E R 4

DIRECT FIDELITY ESTIMATION OF

QUANTUM STATES ON A PHOTONIC CHIP

While the setting for state verification in Chapter 3 is perfectly valid, it has the

drawback that, even in the “soft” scenario, the verifier gains very little information

about the output state if the test fails (besides the information that the state is far

from the target state |ψ〉). Fidelity estimation protocols, like those in § 2.1.4, try to

strike a balance between information gleaned from the experiment, and the

efficiency (in terms of copy complexity) of the protocol. Our aim in this chapter is to

demonstrate that, under some reasonable assumptions, the optimal verification

strategies in Chapter 3 are also optimal fidelity estimators. We demonstrate this

analytically, but also produce a case-study of this fidelity estimation in practice, on

output from a two-qubit silicon photonic chip.

We first give the theoretical description of the fidelity estimation protocols that

we consider, in § 4.1. We then give a brief description of the photonic chip in § 4.2,

and an analysis of a set of output data in § 4.3. We conclude in § 4.4 with a discussion

of a popular technique for estimation in quantum photonics.

4.1 Fidelity estimation protocols

We first discuss the theoretical basis of fidelity estimation protocols. We start in

§ 4.1.1 by outlining a statement of the scenario in which we will operate, and list the

set of requirements that we place on the protocol a priori. We then construct a family

of estimators for the fidelity that satisfy these requirements in § 4.1.2, before showing

in § 4.1.3 that, for two-qubit states, the protocol that we derived in the context of

state verification is the minimum variance estimator within this family. We derive

error bars for these estimates in § 4.1.4, and generalise them to account for “count

miscalibration” in § 4.1.5.
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4.1.1 Premise

Consider a verifier with access to an experiment that claims to produce copies of a

target state |ψ〉. The verifier is given access to n copies of the state produced by

the experiment, and must estimate the fidelity, F, of the output state with |ψ〉. We

consider two scenarios, labelled X and Y:

Scenario X. For the ith trial, 0 ≤ i ≤ n, the output of the experiment is a state ρ ik

drawn from an ensemble of states and associated probabilities indexed by k, {αik,ρ ik},

such that the expected fidelity for each trial is F:
∑

kαik tr(|ψ〉〈ψ|ρ ik) = F, for all i.

For each trial the verifier randomly draws a projective measurement to apply indexed

by j, Pi j, with probability µi j. The state ρ ik is adversarially chosen such that the

verifier gains the least information from the trial. As noted in § 3.2, in scenario X

the verifier must maximise the information they receive for all i and so, assuming that

each ρ ik is chosen without reference to previous choices, the verifier’s choice of strategy

must be independent of i. As such, we drop the i index for αik and ρ ik. Moreover,

the adversary has no knowledge of the actual choice of measurement Pi j, and so must

draw from an ensemble that is independent of i. As such, we also drop the i index for

these quantities.

Scenario Y. The verifier deterministically divides the n total trials into blocks

of size nµ j, for which measurement P j is performed on each copy. The output of the

experiment for all trials is assumed to be the same state ρ such that tr(|ψ〉〈ψ|ρ) = F,

where ρ is adversarially chosen such that the verifier gains the least information from

the trials, in aggregate.

In both of the above scenarios, we impose the following properties on the strategy

S = {µ j,P j}:

1. The estimate of the fidelity is constructed only from the sample mean of

measurement outcomes, rather than any other more complicated statistic; i.e.

the fidelity is constructed in scenario Y by estimating tr(Ωρ)=∑
jµ j tr(P jρ). In

scenario X, the sample mean is tr(Ωρ) = ∑
j,kµ jαk tr(P jρk) = ∑

jµ j tr(P jρ̄), for

the ensemble-averaged state ρ̄ = ∑
kαkρk. Hence we can, without loss of

generality, assume that the output of the experiment is the same

adversarially-chosen state ρ for each trial.

2. The fidelity estimate should be consistent, independent of ρ. Specifically, for

any state ρ such that tr(|ψ〉〈ψ|ρ)= F, the protocol should give the same expected

sample mean, and hence the same expected estimate for the fidelity.

3. If the produced state ρ is exactly the target state |ψ〉, then the protocol must

report F = 1.
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4. The projectors P j correspond to local observables (in both senses: P j cannot be

a non-local projector acting on a non-local part of a single ρ, and it cannot be a

non-local projector acting across multiple copies of ρ).

5. Each P j is a two-outcome projective measurement.

The spirit of Requirements 2 and 3 is similar to that of the future-proof requirement

in § 3.2.1; we would like that an experimentalist can apply this protocol with no a

priori knowledge about the output state, and be guaranteed a consistent estimate

and uniform performance. Regarding Requirement 5, it may be the case in practice

that even if a two-outcome measurement is performed, some “null” outcome occurs

corresponding to the qubit being lost, or the measurement failing to operate. If this

occurs, we do not consider a trial as having taken place.

We will label the random variable denoting the number of “+1” or “success”

outcomes after n trials in each scenario as X and Y, respectively. In scenario X, the

probability of recording a ±1 outcome for a single trial is a mixture of Bernoulli

variables, with weights µ j:

Pr[±1 for single trial]=∑
j
µ j tr(P jρ)k[1− tr(P jρ)]1−k, k ∈ {0,1}. (4.1)

Then the probability of recording k “+1” outcomes after n trials is the compound

distribution

Pr(X = k)=
(
n

k

)(∑
j
µ j tr(P jρ)

)k [
1−∑

j
µ j tr(P jρ)

]n−k

= B(k;n,
∑

j
µ j tr(P jρ)). (4.2)

In scenario Y, each block of nµ j trials has a binomial distribution

Y j ∼ B(k;nµ j, tr(P jρ)). If we let the index j run from 1.. . J, we then have that

Y = ∑J
j=1 Y j. The probability of seeing k successes, Pr(Y = k), is then given by the

convolution of the distributions governing Y j:

Pr(Y = k)=
k∑

`2,`3...`J=1

[
B

(
k−

J∑
j=2

` j;nµ1, tr(P1ρ)
) J∏

j=2
B

(
` j;nµ j, tr(P jρ)

)]
. (4.3)

A key point to note is that both distributions have the same mean:

E(X )= n
∑

j
µ j tr(P jρ), (4.4)

and

E(Y )= E(
∑

j
Y j)=

∑
j
E(Y j)= n

∑
j
µ j tr(P jρ). (4.5)

Thus given that the fidelity estimate is constructed from the sample mean, the

verifier expects the same point estimate for the fidelity in both scenarios. However,

any quantity derived from other statistical moments may differ between scenarios X

and Y.
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4.1.2 Estimators for the fidelity

Consider a fidelity estimation strategy Ω = ∑
jµ jP j. The consequence of

Requirement 3 is that each projector P j = |ψ〉〈ψ|+ P̄ j, for some residual projector P̄ j.

Thus we know that |ψ〉 is an eigenstate of Ω with eigenvalue +1; i.e. we can write Ω

in its eigenbasis as Ω = |ψ〉〈ψ| +∑
` q`|φ`〉〈φ`|. Then the expectation of Ω with

respect to some state ρ is

tr(Ωρ)= tr(|ψ〉〈ψ|ρ)+∑
`

q` tr(|φ`〉〈φ`|ρ)= F +∑
`

q` tr(|φ`〉〈φ`|ρ). (4.6)

Now, for the most general set of parameters q` it is possible to vary the state ρ in

this expression and change the sample mean, even if F is fixed. This is in

contradiction with Requirement 2. There is only one viable choice for the verifier

given this requirement, which is to set q` = q, ∀`, i.e. when Ω is of the form

Ω= |ψ〉〈ψ|+ q
∑
` |φ`〉〈φ`| = (1− q)|ψ〉〈ψ|+ q1. Then

F = 1
1− q

[
tr(Ωρ)− q

]
. (4.7)

We will denote XF and YF the experimental estimate of the fidelity in scenarios X

and Y , respectively. In analogy with Eq. 4.7, we construct our estimate for the fidelity

in scenario X as

XF = 1
1− q

[
X
n
− q

]
, (4.8)

and equivalently for YF . One may worry about the potential bounding values for the

variables XF (and YF ). It is clear that, as X ≤ n, the estimate XF ≤ 1. However, if

X < nq then the fidelity estimate XF can be negative. This ceases to be a problem

in the limit of large n; the weak law of large numbers implies that the sample mean

will converge in probability to the expected value, and the expected value of X is

E(X )= ntr(Ωρ)= n[q+F(1− q)]≥ nq. (4.9)

However, it is instructive to calculate the regime in which we expect to see negative

estimates for the fidelity, given a particular choice of n, F and q. The probability that

X ≤ nq can be bounded by the concentration inequality

Pr(X ≤ nq)≤ exp {−nD (q‖q+F(1− q))} , (4.10)

where D(·‖·) is the relative entropy. Suppose we tolerate some fixed probability of a

negative estimate for the fidelity, i.e. Pr(X ≤ nq)= δ. This expression implies that, for

a verifier capable of carrying out n trials and using a strategy with parameter q, there

is a lower bound to F above which we will report a negative fidelity with probability

bigger than δ. In the two-qubit experiments that follow, q ≤ 0.6 and n > 1000. We
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take as a worst-case that the output state is the maximally mixed state; and so we

have a lower bound on the fidelity F ≥ 0.25. Given these parameters, Pr(X ≤ nq) .

10−10 and so we need not worry about negative fidelity estimates for the case-study

below. However, the situation may be more problematic for worse strategies (those

with higher q), fewer trials n, or for estimates of states with particularly low fidelity

(F ≈ 0).

4.1.3 Estimator optimality

Given the family of possible measurement strategies Ω satisfying the strategy

requirements listed above, we would like to choose the strategy that produces the

highest quality estimate of F. We now show the following:

Lemma 25. Given a family of measurement strategiesΩ=∑
jµ jP j = (1−q)|ψ〉〈ψ|+q1,

for varying q, the variance of the estimate of the fidelity, F, in both scenarios X and Y

is in the worst case

Var(YF )≤ 1−F
n

(
F + q

1− q

)
=Var(XF ). (4.11)

Moreover, there exist some plausible choices of Ω that saturate this inequality, and

hence the minimum variance estimator in either scenario in the worst case is the

strategy that minimises q.

Proof. Scenario X - X is binomially distributed according to B(n,
∑

jµ j tr(P jρ)), and

so

Var(X )= n

[∑
j
µ j tr(P jρ)

][
1−∑

j
µ j tr(P jρ)

]
(4.12)

= ntr(Ωρ)(1− tr(Ωρ))

= n[q+ (1− q)F][1− q− (1− q)F]

= n[q(1− q)−Fq(1− q)+F(1− q)2 −F2(1− q)2]

= n(1− q)[q+F(1−2q)−F2(1− q)]. (4.13)

The variance of XF is just

Var(XF )= 1
n2 · 1

(1− q)2 Var(X )= 1
n

(
q+F(1−2q)−F2(1− q)

1− q

)
= 1−F

n

(
F + q

1− q

)
, (4.14)

and so the variance is independent of the adversary’s choice of ρ.

Scenario Y - For each block of nµ j measurements, each setting j is associated

with a binomially-distributed random variable Y j ∼ B(nµ j, tr(P jρ)). The random
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variable Y governing estimates of tr(Ωρ) given n trials is then the composite

variable Y = ∑
j Y j. Given uncorrelated samples, the variance of Y is

Var(Y ) = Var(
∑

j Y j) = ∑
j Var(Y j) = ∑

j nµ j tr(P jρ)(1 − tr(P jρ)). Given that each

measurement accepts the target with certainty, we can expand the projector

P j = |ψ〉〈ψ|+ P̄ j for some residual projector P̄ j. Then we can rewrite Var(Y ) as

Var(Y )= n
∑

j
µ j tr(P jρ)(1− tr(P jρ)) (4.15)

= n
∑

j
µ j tr[(|ψ〉〈ψ|+ P̄ j)ρ]{1− tr[(|ψ〉〈ψ|+ P̄ j)ρ]} (4.16)

= n
∑

j
µ j[F + tr(P̄ jρ)]{1− [F + tr(P̄ jρ)]} (4.17)

= n
∑

j
µ j[F + tr(P̄ jρ)−F2 −2F tr(P̄ jρ)− tr(P̄ jρ)2] (4.18)

= n[F(1−F)+ (1−2F)
∑

j
µ j tr(P̄ jρ)−∑

j
µ j tr(P̄ jρ)2]. (4.19)

Now,
∑

jµ jP̄ j = q(1−|ψ〉〈ψ|), and so
∑

jµ j tr(P̄ jρ)= q(1−F). So

Var(Y )= n

[
F(1−F)+ q(1−F)(1−2F)−∑

j
µ j tr(P̄ jρ)2

]
. (4.20)

Using Jensen’s inequality and the fact that x2 is convex implies that

∑
j
µ j tr(P̄ jρ)2 ≥

(∑
j
µ j tr(P̄ jρ)

)2

= q2(1−F)2, (4.21)

and so we can bound the variance as

Var(Y )≤ n[F(1−F)+ q(1−F)(1−2F)− q2(1−F)2]

= n
[
(1− q)

[
F(1−F)+ q(1−F)2]]

. (4.22)

Then, the variance of our estimate for the fidelity in scenario Y is given by Var(YF )=
1

n2(1−q)2 Var(Y ), or that

Var(YF )≤ 1−F
n

(
F + q

1− q

)
=Var(XF ). (4.23)

It is in the interest of an adversary to choose ρ such that the variance is as large as

possible; i.e. to saturate the bound in Eq. 4.21. This is saturated when each term

tr(P̄ jρ) is equal, for all j. There are valid choices of {µ j,P j} where this is possible; for

example, if tr(P j) is a constant independent of j, then the adversary can pick

ρ =
(
F − 1−F

d−1

)
|ψ〉〈ψ|+ 1−F

d−1
1 (4.24)

and so tr(P̄ jρ)= 1−F
d−1 tr(P̄ j), which is independent of j. Hence in the worst case, there

exists an Ω such that Var(YF )=Var(XF ).
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This optimisation is precisely the one carried out in the previous chapter, for two-

qubit states in particular. Therefore we have the following corollary:

Corollary 26. The minimum-variance local estimator Ω= ∑
jµ jP j for the fidelity to

the target state |ψ〉 = sinθ|00〉+cosθ|11〉 for the range 0< θ < π
2 , θ 6= π

4 , is that given in

Theorem 18:

Ω= 2−sin(2θ)
4+sin(2θ)

P+
ZZ + 2(1+sin(2θ))

3(4+sin(2θ))

3∑
k=1

(1−|φk〉〈φk|), (4.25)

where the states |φk〉 are

|φ1〉 =
(

1p
1+ tanθ

|0〉+ e
2πi
3p

1+cotθ
|1〉

)
⊗

(
1p

1+ tanθ
|0〉+ e

πi
3p

1+cotθ
|1〉

)
, (4.26)

|φ2〉 =
(

1p
1+ tanθ

|0〉+ e
4πi
3p

1+cotθ
|1〉

)
⊗

(
1p

1+ tanθ
|0〉+ e

5πi
3p

1+cotθ
|1〉

)
, (4.27)

|φ3〉 =
(

1p
1+ tanθ

|0〉+ 1p
1+cotθ

|1〉
)
⊗

(
1p

1+ tanθ
|0〉− 1p

1+cotθ
|1〉

)
. (4.28)

This estimator has variance

Var(XF )=Var(YF )= 1−F
n

(F +1+sinθ cosθ) . (4.29)

4.1.4 Error bars

Denote the experimental estimate of the fidelity as F̃ (where in the experiments

defined here, either F̃ = XF or F̃ = YF , depending on the scenario), and the true

value as F. Then to derive a (possibly lop-sided) confidence interval on the estimate

of F, [F̃ + t+F , F̃ − t−F ], one must invert the expressions

Pr[F − F̃ ≥ t+F ]≤ δ (4.30)

Pr[F − F̃ ≤ t−F ]≤ δ (4.31)

for t+F and t−F , where 1−δ is some prespecified confidence. There are three ways that

one might contemplate doing this: (i) make full use of the mathematical description

of the distributions of XF and YF to derive an exact confidence interval; (ii) use some

asymptotic approximation of the exact distribution to derive an approximate

confidence interval; (iii) make use of an appropriate concentration inequality that

only relies on some partial information about the true distribution.

Consider first the strategy Ω = ∑
jµ jP j in scenario X; i.e. for each copy of ρ, the

verifier picks a setting indexed by j with probability µ j. In this scenario the

probability of outputting outcome “success” for k of n trials has binomial distribution

Pr(X = k) = B(k;n,
∑

jµ j tr(P jρ)). In this instance, we can take approach (i), and
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derive an exact binomial proportion confidence interval, or “Clopper-Pearson”

interval [63]. Denote the true mean E(X )
n , and the experimentally-measured sample

mean as X
n . We would like to make a statement that the true mean is close to the

sample mean, with some statistical confidence, i.e. we require that

Pr[X ≥ E(X )+nt−]≤ δ & Pr
[
X ≤ E(X )−nt+

]≤ δ, (4.32)

or by inserting the distribution for X as

Pr

[
1
n

B(k;n,
∑

j
µ j tr(P jρ))≥∑

j
µ j tr(P jρ)+ t−

]
≤ δ (4.33)

& Pr

[
1
n

B(k;n,
∑

j
µ j tr(P jρ))≤∑

j
µ j tr(P jρ)− t+

]
≤ δ. (4.34)

In principle, this can then be explicitly solved for t+ and t−. The original solution is

given by Clopper and Pearson in [63]. The resultant error bars are given by

t− ≥ X − IX

(
δ

2
;nX ,n−nX +1

)
; (4.35)

t+ ≥ IX

(
1− δ

2
;nX +1,n(1− X )

)
− X . (4.36)

where IX (a;b, c) is the ath quantile of the “incomplete” Beta distribution for random

variable X , with “shape” parameters b and c. Given the skewness of the binomial

distribution, we do not expect t+ = t− in general. Given the simple linear

relationship between the sample mean and fidelity given by Eq. 4.7, we can denote

the experimental estimate of the fidelity as XF = 1
1−q

( X
n − q

)
and the true fidelity as

F = 1
1−q

(
E(X )

n − q
)
, respectively. Then taking the inequalities in Eq. 4.32 and

applying the same linear transformation gives

Pr
[

XF ≥ F + 1
1− q

(t−− q)
]
≤ δ & Pr

[
XF ≤ F − 1

1− q
(
t+− q

)]≤ δ, (4.37)

This implies that we can bound the estimate of the fidelity XF in the interval [XF +
t+F , XF − t−F ] where

t−F = 1
1− q

(t−− q)≥ XF − 1
1− q

(IX (δ;nX ,n−nX +1)− q) (4.38)

t+F = 1
1− q

(t+− q)≥ 1
1− q

(IX (1−δ;nX +1,n(1− X ))− q)− XF . (4.39)

Alternatively, one may try to find a simpler confidence interval by appealing to (ii);

e.g. by considering the normal approximation to the binomial distribution. However,

these approximations are only completely faithful to the underlying distribution in

the limit of a large number of trials, and tend to perform poorly when the number of
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trials is small or the trial bias is close to 0 or 1. We would like to operate in a scenario

where an experimentalist can run the fidelity estimation protocol for any period of

time, and be guaranteed a point estimate with a well-defined error bar; in particular,

we would like the error bars to be meaningful even for small n. We cannot guarantee

the correctness of approximate intervals constructed by these approximations, in this

case. Alternatively, one may try (iii), and make use of appropriate concentration

bounds for X . However, these are guaranteed to produce a looser confidence interval

than the exact solution, as they rely on partial information about the experiment.

In scenario Y, we no longer have the case that the underlying distribution is a

simple binomial; instead, we have that the samples are drawn from a convolution of

distributions, with each element given by a binomial distribution and weights given

by the parameters µ j. In this case, we cannot proceed with approach (i) as above

and extract an analytic closed form for the exact confidence interval. Moreover, we

also cannot appeal to (ii) for the reasons stated above. We are left with approach

(iii), i.e. applying an appropriate concentration inequality that relies on some partial

information about Y . In this case, for example, we can make use of the Chernoff-

Hoeffding inequalities:

Pr[YF ≥ F + t−F ]≤ exp
{−nD

(
F + t−F‖F

)}≤ δ, (4.40)

Pr[YF ≤ F − t+F ]≤ exp
{−nD

(
F − t+F‖F

)}≤ δ, (4.41)

for some pre-specified confidence 1− δ. As a reminder to the reader, D(·‖·) is the

relative entropy, which for Bernoulli variables a and b we can expand as:

D (a‖b)= a ln
a
b
+ (1−a) ln

1−a
1−b

. (4.42)

The goal is to extract the behaviour of t+F and t−F , the bounds of the error bar, as

a function of n, F and δ. In general, the expression for the relative entropy is not

analytically invertible and the error bars must be extracted numerically. However,

as in § 3.2.3, we can write down a couple of useful edge cases: (a) in the best possible

case, F = 1; then

D(F − t‖F)→ ln
1

1− t
. (4.43)

Substituting this into the Chernoff bound gives

t = 1−
(

1
δ

)− 1
n ≈ 1

n
ln

1
δ

; (4.44)

(b) in the worst case, F 6= 1 and t is small. Taking a Taylor series expansion to first

order for small t gives

D → t2

2F(1−F)
. (4.45)
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Substituting into the Chernoff bound yields

t =
√

2F(1−F)
n

ln
1
δ

. (4.46)

Note that this is only better than the bound given by the weaker Hoeffding’s

inequality by a constant factor; however, this difference might be useful in practice.

Additionally, the confidence interval given by the Chernoff-Hoeffding inequality is

asymptotically optimal (see § 2.1.6); however, for fixed sample sizes this interval

may be looser than in the exact case.

4.1.5 Count miscalibration

As we will observe in the experimental case study in § 4.2 onward, it will often be

the case that, even if the measurement prescription requires nµ j copies of the state

ρ to be measured with P j, this may not be exactly achievable in practice. While this

may be achievable in implementations with static qubits, quantum optics is prone to

(a) photon loss; (b) variation in counts due to the probabilistic nature of

single-photon sources; and (c) fluctuations in the number statistics of quantum

states in the experiment. All of these factors lead to discrepancies between the

number of measurements performed with respect to a particular setting, and the

number of measurements specified by the strategy. We show below that the effect of

this miscalibration is calculable. We focus on scenario Y, as this corresponds to the

photonic implementation discussed below. While the proof of Theorem 27 looks

somewhat involved, we note that it is almost identical to the original proof of the

Chernoff-Hoeffding inequalities in Eq. 4.40 [114].

Theorem 27. Consider a strategy Ω = ∑
jµ jP j, in scenario Y, i.e. where each

measurement setting j should be applied deterministically to a block of nµ j

independent copies of ρ. Suppose that an experiment instead carries out

measurements P j on nα j copies with a number of successes given by the binomial

random variable Y j, for
∑

jα j = 1. Then let w j = µ j
α j

and w = 1
J

∑J
j=1 w j. Then the

verifier can construct an estimator Y = ∑
j w jY j, with error bars given by the

Chernoff-Hoeffding inequalities

Pr[Y ≥ (p+ t)n]≤ exp
{
−D

(
p+ t

w

∥∥∥∥ p
w

)
n
}

, (4.47)

Pr[Y ≤ (p− t)n]≤ exp
{
−D

(
p− t

w

∥∥∥∥ p
w

)
n
}

. (4.48)

Proof. In this scenario, for setting j the verifier can take data on nα j copies and

weight the measured number of successes by a factor µ j
α j

, i.e. that Y = ∑
j w jY j, for

w j = µ j
α j

. Then E(Y ) = ∑
j
µ j
α j

nα j tr(P jρ) = n
∑

jµ j tr(P jρ), so the expectation of the
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output (i.e. the verifier’s point estimate of the fidelity) is the same as if the

experiment ran with perfect weights. As for error bars, label the ith trial of setting j

as Yi j, where Yi j is a Bernoulli trial with success probability pi j = tr(P jρ). Then,

Y =∑J
j=1 w j

∑nα j
i=1 Yi j. Also, denote E(Y )=∑

jµ j tr(P jρ) :=∑
jµ j p j := p. Then

Pr[Y ≥ (p+ t)n]=Pr[eλY ≥ e(p+t)n], (4.49)

for some λ> 0, and so by Markov’s inequality we have that

Pr[Y ≥ (p+ t)n]≤ E(eλY )
eλ(p+t)n . (4.50)

Then substituting in Y =∑
i j w jYi j and assuming that each trial is independent gives

Pr[Y ≥ (p+ t)n]≤
∏

i j E(eλw jYi j )

eλ(p+t)n . (4.51)

Now, eλr is convex in r, so we know that, for r ∈ [0,w], eλr ≤ 1− r
w + r

w eλw. Thus,

Pr[Y ≥ (p+ t)n]≤
∏

i j E
(
1−Yi j +Yi j eλw j

)
eλ(p+t)n . (4.52)

The expectation of Yi j is p j = tr(P jρ). So

Pr[Y ≥ (p+ t)n]≤
∏

i j
(
1− p j + p j eλw j

)
eλ(p+t)n . (4.53)

Then, by the AM/GM inequality
∏

k xk ≤
( 1

n
∑

k xk
)n, we have that

Pr[Y ≥ (p+ t)n]≤
( 1

n
∑

i j
(
1− p j + p j eλw j

)
eλ(p+t)

)n

. (4.54)

Now, the weights w j and probabilities of success p j are independent of i, so the

summation over i vanishes:

Pr[Y ≥ (p+ t)n]≤
( 1

n
∑

i j
(
1− p j + p j eλw j

)
eλ(p+t)

)n

(4.55)

=
(

1−∑
jα j p j +∑

jα j p j eλw j

eλ(p+t)

)n

(4.56)

=
1−∑

j
α j
µ j
µ j p j +∑

j
α j
µ j
µ j p j eλw j

eλ(p+t)

n

(4.57)

≤
1− p

∑
j

1
w j

+ p
∑

j
1

w j
eλw j

eλ(p+t)

n

. (4.58)

Then, using Jensen’s inequality and the fact that 1
x is convex, we have that

∑
j

1
w j

≥
1∑
j w j

and so we can simplify the concentration inequality as

Pr[Y ≥ (p+ t)n]≤
1− pJ∑

j w j
+ pJ∑

j w j
e
λ
J

∑
j w j

eλ(p+t)

n

=
(

1− p
w + p

w eλw

eλ(p+t)

)n

, (4.59)
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where w = 1
J

∑
j w j. Now, this expression should hold for all λ, and as we are

searching for the tightest bound, we must optimise over the choice of this parameter.

Differentiating the expression (ignoring the exponent n) gives

d
dλ

[(
1− p

w

)
e−λ(p+t) + p

w
eλ(w−p−t)

]
=−(p+ t)

(
1− p

w

)
e−λ(p+t) + (w− p− t)

p
w

eλ(w−p−t);

(4.60)

so setting to zero and rearranging for λ gives

λ= 1
w

ln
[

(p+ t)(w− p)
p(w− p− t)

]
. (4.61)

All that remains it to substitute into Eq. 4.59. Taking instead the (natural) log of this

expression, and ignoring the exponent n, we have that

ln
[(

1− p
w

)
e−λ(p+t) + p

w
eλ(w−p−t)

]
= ln

[
e−λ(p+t)

(
1− p

w
+ p

w
eλw

)]
(4.62)

=−λ(p+ t)+ ln
(
1− p

w
+ p

w
eλw

)
(4.63)

=− p+ t
w

ln
[

(p+ t)(w− p)
p(w− p− t)

]
(4.64)

+ ln
(
1− p

w
+ p

w
· (p+ t)(w− p)

p(w− p− t)

)
(4.65)

=− p+ t
w

ln
[

(p+ t)(w− p)
p(w− p− t)

]
+ ln

(
w− p

w− p− t

)
(4.66)

=− p+ t
w

ln
p+ t

p
− p+ t

w
ln

w− p
w− p− t

+ ln
w− p

w− p− t
(4.67)

=− p+ t
w

ln
p+ t

p
−

(
1− p+ t

w

)
ln

w− p− t
w− p

(4.68)

=− p+ t
w

ln
p+t
w
p
w

−
(
1− p+ t

w

)
ln

1− p+t
w

1− p
w

(4.69)

=:−D
(

p+ t
w

∥∥∥∥ p
w

)
. (4.70)

In the case where µ j = α j,∀ j, we have that w = 1; and this reduces to the familiar

expression for the relative entropy. Thus we have that

Pr[Y ≥ (p+ t)n]≤ exp
{
−D

(
p+ t

w

∥∥∥∥ p
w

)
n
}

. (4.71)

An equivalent derivation holds for the lower bound on Y .
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Figure 4.1: A schematic of the two-qubit photonic chip.

4.2 The photonic chip

The experimental setup that we use as a test bed is a two-qubit silicon photonics

chip. In this section, we sketch the structure and operation of the chip; our treatment

should not be considered comprehensive, and we refer the reader to [190] for a more

thorough description. As a disclaimer, the fabrication and operation of this chip is not

the novel aspect of this work - we include a discussion for the sake of completeness.

Fig. 4.1 is a schematic of the silicon photonic chip. Input laser light is generated

off-chip, via a tunable, continuous wave (CW) laser. The light is then amplified with

an optical fibre amplifier (EDFA) and the spectrum is filtered by a dense

wavelength-division multiplexing (DWDM) module. The polarisation of this light is

then controlled by in-line polarisation controllers, in order to optimise the coupling

of light into the chip. The coupling from fibre into the chip is via a V-groove fibre

array.

As for the chip itself, its footprint is 7.1 mm × 1.9 mm, and is built with readily

available CMOS-based fabrication techniques. It contains a multitude of components:

(i) four spiral-waveguide spontaneous four-wave mixing (SFWM) photon-pair sources;

(ii) four laser pump rejection filters; (iii) 82 multi-mode interferometer (MMI) beam

splitters; and (iv) 58 simultaneously-operational thermo-optic phase shifters.

The operation of the chip itself can be split into five sections, as labelled in

Fig. 4.1. The function of each section is, broadly, the following: (1) conversion of laser

light into entangled photon pairs, using the four spiral-waveguide SFWM sources;
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(2) preparing initial single-qubit states, in an appropriate Fock basis; (3)

implementing single-qubit operations; (4) implementing a two-qubit, non-local

operation; (5) rotating the output state so that it can be measured in a desired basis.

Parts (1), (3) and (4), as a whole, can in principle be used to implement any given

SU(4) operation.

Once the unitary and measurement basis has been specified, photons emerging

from the device are collected in fibre by the same V-groove fibre array. Two

analogous output DWDMs are used to separate the signal (red) and idler (blue)

photons. Photons are detected by two fibre-coupled superconducting nanowire

single-photon detectors (SNSPDs), with the polarisations of output photons again

optimised by in-line polarisation controllers (PC). Coincidence counting logic records

the two-photon coincidence events. Phase shifters on the device are configured

through a digital-to-analog converter (DAC), controlled from a computer.

This design has a number of attractive features. It in principle performs

universal two-qubit processing with high fidelity, as there is inherent phase stability

of the optical paths and waveguide interferometric structures due to the monolithic

construction of the device. All the thermal phase-shifters can be operated

simultaneously, and can be reprogrammed at kHz rates. Experiments carried out

on-chip are also repeatable under continuous operation, without recalibration.

4.3 Protocol implementation and analysis

The above fidelity estimation protocol was run on the photonic chip for input states

of the form |ψ〉 = sinθ|00〉+ cosθ|11〉, for θ = kπ
32 , k = 0. . .16. While the projectors in

the optimal strategy for states of this form in Theorem 18 have rank 2 and 3, the

chip itself is only capable of measuring rank 1 projectors. Hence each measurement

must be “unpacked” into a lower rank form; the precise details of the measurements,

and the duration for which they were performed, are shown in Table B.1 in

Appendix B. We should also note that for the Bell state θ = π
4 we also used the

strategy in Theorem 18, despite it not being exactly optimal in this instance. For

each choice of k, the total integration time was fixed at 400 seconds, giving a total

integration time for the whole data set of ∼ 2 hours. Calculation of the fidelities and

their associated error bars for the entire data set in Mathematica is computationally

negligible, taking a few seconds. We take 1−δ= 0.95.

The resultant fidelities are plotted in Fig 4.2. The size of these error bars depends

on a handful of factors:

1. Dependence on θ. If the sample mean has error bars t± and the fidelity t±F , then

we have seen that t±F ∼ 1
1−q(θ) t± = (2+ sinθ cosθ)t±. Hence, if all other factors
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Figure 4.2: The fidelity estimate and confidence interval for target states of the form
sinθ|00〉 + cosθ|11〉. Point estimates extracted from output data from the chip are
given by filled circles; with interpolating values given by the dotted line (included
only as a visual aid). The shaded region bounded by solid lines denotes a 95%
confidence interval derived from the Chernoff-Hoeffding error bars in Theorem 27.

are fixed, we expect smaller error bars for states close to product, and larger

error bars for states close to the Bell state.

2. Dependence on F. The relative entropy is significantly greater, and hence the

Chernoff-Hoeffding bounds in Thm. 27 yield a much smaller error bar for a

fixed number of counts, if the fidelity is close to F = 1.

3. Dependence on n. The total number of measurements per choice of θ varies due

to both stochastic mechanisms such as photon loss, and systematic mechanisms

based on the operational structure of the chip.

4. The effect of count miscalibration. The amount of count miscalibration varies

between choices of θ, in an unpredictable way.

5. Choice of experimental scenario. Operating in scenario Y , rather than scenario

X , means that we cannot use the exact Clopper-Pearson error bar, which is

generically smaller.
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6. Choice of concentration inequality. Deriving error bars from a looser

concentration inequality, such as Hoeffding’s inequality, makes a notable

difference on the size of the error bars.

We can be quantitative about the effect of each of these factors on the size of the

confidence intervals in Fig. 4.2.

Regarding Point 1, we can see in Fig. 4.3 that designing an experiment that

produces high-fidelity states, while being beneficial in an obvious sense, also yields a

greater relative entropy and so is beneficial in that it becomes much quicker to

verify (or, that it requires far fewer total measurements to verify to within a

particular fixed confidence interval than a low-fidelity state). This would also be the

case in scenario X; the size of the Clopper-Pearson error bars is also minimised for

extremal biases (i.e. when the sample mean is expected to be 0 or 1).

Regarding Point 2, there is a penalty incurred in the size of the error bar as the

target state becomes more entangled. This is because the fidelity is given by Eq. 4.7,

where there is a conversion factor of 1
1−q in converting from the sample mean to

the fidelity. If the verifier had access to the projector |ψ〉〈ψ|, then q = 0, the sample

mean would directly give an estimate of the fidelity, and there would be no penalty

in converting between the two. However, the verifier is restricted to implementing

local measurements; and so q 6= 0 and there is a θ-dependent penalty. Thus this effect

can be interpreted as the penalty for restricting to local measurements. On the other

hand, we have already seen that the strategy in Thm. 18 is the local strategy that

minimises q, and so any other fidelity estimation protocol that one might consider

must incur a penalty that is even more acute.

92



4.3. PROTOCOL IMPLEMENTATION AND ANALYSIS

0 π

8

π

4

3π

8
π

2

θ

0.5

0.6

0.7

0.8

0.9

1

Fidelity

Fidelity (Scenario Y, no count calib.) Fidelity (Scenario Y)

Figure 4.5: A comparison of the effect of miscalibrated counts. Both curves use the
same data set; in the uncalibrated case, the number of counts for each setting are
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from Theorem 27.
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Figure 4.6: A comparison of the effect of implementing scenario Y over scenario
X. The “scenario X” data set is the same as that for scenario Y, but where we
have (falsely) made the assumption that each count is from a randomly selected
measurement setting. The scenario X data confidence intervals do not include the
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Figure 4.7: A comparison of the effect of choosing a looser concentration inequality,
for the same data set (i.e. using the Chernoff bound in Eq. 4.46).

Regarding Point 3, it is clear that the problem of fluctuating counts is particularly

troublesome for this data set. Despite each choice of θ being integrated for the same

period of time, raw measurement counts vary by a factor of ∼ 4 between the state

|11〉 and the Bell state (see Fig. 4.4). Additionally, this fluctuation appears to be

systematic rather than stochastic, and has a strong dependence on θ. This apparent

dependence is problematic, as it only exacerbates the issue of growing errors bars for

states close to a Bell state, given Point 1. It is unclear whether this variation could

be tamed by better chip calibration, or whether it is a feature endemic in photonics

experiments of this type.

The effect of count miscalibration is shown in Fig. 4.5. While the effect is small

for 0≤ θ ≤ π
4 , the effect becomes the dominant source of error for states close to either

|00〉 or |11〉.
The effect of implementing scenario Y over scenario X is shown in Fig. 4.6.

Broadly, switching scenarios would lead to ∼ 20% smaller error bars, for almost all

values of θ; however, implementing scenario X requires rapid switching of

measurement bases which is likely to be infeasible given limitations of current

technologies (or at least, would require a recalibration time of thermal phase

shifters that would likely swamp any statistical advantage in integration time).

Finally, the effect of deriving error bars by a looser concentration inequality (in

particular, Hoeffding’s inequality in Eq. 4.46) is shown in Fig. 4.7. It is clear that

this makes a significant difference on the size of the error bars, particularly for
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high-fidelity states; the error bar for the Bell state, for example, is ∼ 10 times larger

when using Hoeffding’s inequality than the tighter Chernoff-Hoeffding bound based

on the relative entropy. It is worth noting that the prior art in fidelity estimation

protocols [84, 213] both make use of this looser concentration inequality.

4.3.1 Comparison with other fidelity estimation protocols

To assess the quality and practicality of the fidelity estimation protocol derived

above, we would like to compare it to previously established protocols (or bounds).

To this end, we consider bounds on fidelity estimates from the precision-guaranteed

tomography protocol in [213], and the direct fidelity estimation (DFE) protocol

in [85].

Both of these protocols do not make use of the tailored measurement settings

in Thm. 18, but instead rely on Pauli measurements to produce an estimate of the

fidelity. To give as reasonable a comparison as possible for these bounds, we integrate

for the same total integration time as the protocol derived here (but with integration

time divided among 15 Pauli measurement settings, rather than the 4 settings in our

protocol). If, after the same integration time, the total number of counts are fewer

than those in Fig. 4.4, we artificially scale the total number of counts in favour of

tomography and DFE, such that they agree. We make the generous assumption that

both the fidelity estimation and tomography protocols were carried out completely

perfectly (i.e. without error, miscalibration or loss).

To construct a point estimate for the fidelity in the tomographic case, we carry out

the standard procedure for maximum likelihood tomography (see § 2.3.1).1 We then

directly compute the fidelity of the target state with the maximum likelihood state.

In the direct fidelity estimation scenario, we carry out the protocol in § 2.1.4 with

parameters given by Thm. 4. However, rather than choosing measurement settings

at random for each trial, we fix blocks of measurement settings, with size normalised

to the expectation of the target state for that particular Pauli observable.

Both of the error bar bounds are conservative, giving confidence interval

guarantees for the worst case states and not relying on precise details of the data

set. The precise details of the bounds we use are in § 2.1.4 (where we use the tighter

bounds for “well-conditioned” states) and § 2.3.4, respectively. The resultant error

bars are shown in Fig. 4.8. It is clear that, for this data set and for the practically

implementable integration times achievable by this experiment, that the error bars

derived from precision-guaranteed tomography and direct fidelity estimation in [85,

1As stated in § 2.3.4, the point estimate for precision-guaranteed tomography in [213] is technically
not the maximum likelihood estimate, but the “extended-norm minimisation” estimate. However, as
our focus will be on the error bars rather than the point estimate, we take the maximum likelihood
estimate purely because it is easier to compute.
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Figure 4.8: A comparison of the fidelity estimation protocol derived here, with the
fidelity estimation protocol in [85] and the precision-guaranteed tomography protocol
in [213].

213] are significantly larger than for the protocol derived here. It is also worth

mentioning that the prior bounds are insensitive to the fact that the fidelity is

bounded, F ∈ [0,1], giving upper bounds that are significantly larger than the

maximal fidelity across the entire data set. In general, it is arguable whether the

prior tomography and fidelity estimation bounds have any predictive power at all for

this data set, given that the error bars do not preclude both the exact target state

with F = 1, and states close to the “worst-case” output, where the experiment just

produces a maximally-mixed state, with F = 0.25.

We believe we have presented a protocol that is statistically rigorous given a

plausible set of assumptions, and so the fact that our point estimate is significantly

lower than in the tomography and DFE protocols, and strays close to the boundary

of the DFE confidence interval around θ = π
8 , is problematic. A plausible explanation

is to note that different measurement settings are used in each protocol, and it may

well be the case that there is some systematic error in the way the chip applies the

measurements in Thm. 18 that is not present for Pauli measurements, leading to

lower point estimates in the fidelity. However if this is true, then there is some
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Figure 4.9: (i) Filled circles: a comparison of sizes of confidence interval in estimating
the fidelity to |ψ〉 = sinθ|00〉+cosθ|11〉 for our protocol, tomography and direct fidelity
estimation (DFE), for θ = π

8 , as a function of integration time. (ii) Cyan: a comparison
of the sizes of confidence interval for our protocol, for three choices of θ.

physical flaw in the fabrication, calibration or operation of the chip that is entirely

overlooked by the other protocols.

4.3.2 Performance with increasing integration time

It is also worthwhile considering how these error bars evolve when the integration

time, and hence the total number of measurements performed, is increased. To this

end, we carried out the protocol in Thm. 18 for varying integration times, ranging

from 200 to 2000 seconds per choice of θ. To give a rough comparison with

tomography and direct fidelity estimation as in Fig. 4.8, we take the total number of

measurements for the original tomography data set integrated over 400 seconds and

simply multiply by a scale factor to get an estimate for the total number of counts to

be expected over the same range of integration times. The bound for

precision-guaranteed tomography only depends on the total number of

measurements; the direct fidelity estimation bound relies on both this, and the

particular choice of θ.

The data is shown in Fig. 4.9, for our protocol taking θ ∈ {
π
8 , π4 , 3π

8
}
, for the DFE

protocol taking θ = π
8 and for the precision-guaranteed tomography protocol. We

again take δ = 0.05. At this δ and for an integration time T ≤ 600 seconds, the

implicit bounds from precision-guaranteed tomography have no solution. For all
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choices of θ, we generically do not see an advantage in our protocol that grows with

integration time. On the other hand, for each choice of θ, there is a significant

constant-factor advantage in applying our protocol over the alternatives. For θ = π
8 ,

the error bars for our protocol are between ∼ 10× and ∼ 15× smaller than those for

direct fidelity estimation, and between ∼ 30× and ∼ 35× smaller than those for

precision-guaranteed tomography.

4.4 Overconfidence in photonic tomography

While there is a substantial body of work regarding confidence intervals in quantum

state tomography (see § 2.3.4), it is very common, particularly in quantum

photonics, to eschew these approaches in favour of techniques that are less

statistically rigorous but simpler to implement. An overwhelming favourite is to

apply a technique that we will refer to as “photonic estimation”, the details of which

we will describe shortly. This approach is typically flagged in the analysis by a

phrase similar to “error bars calculated assuming Poissonian counting statistics” or

“calculated by propagating errors that are assumed to be Poisson distributed” and is

employed for a wide variety of estimated quantities, such as the fidelity,

entanglement witnesses, and Hong-Ou-Mandel visibility [133, 207, 42, 226, 43, 228,

48, 198, 211, 197, 227, 229].

Suppose we have a setting where we measure multiple copies of some output

state ρ, which we must tomographically reconstruct and then make use of this

reconstruction to estimate some quantity Q. The protocol for deriving error bars

using this method is to first construct a point estimate, then to use Monte Carlo

methods to generate an artificial data set assuming that repeated experiments

would give Poisson-distributed samples around the initial estimate. More

specifically, the protocol is as follows:

Protocol Photonic estimation
1: for i = 1 to M do
2: for j = 1 to 4N −1 do
3: From meas data construct point estimate P̃ j of prob P j = 1

2 [tr(σ jρ)+1]
4: Take sample from artificial distribution pi j ∼Po(P̃ j)
5: Store pi j in 4N −1- dim vector pi

6: Calculate maximum likelihood state ρ i consistent with the set pi
7: Estimate the quantity Q given the state ρ i, store in vec Q
8: Output sample standard deviation of the elements of Q.

The earliest result known to the author that uses this protocol in the context of

continuous-variable tomography is due to Leonhardt et al. [139], and in the context
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Figure 4.10: A comparison of the fidelity estimation protocol and the photonic
estimation protocol in § 4.4.

of qubits by Hradil [117] and Altepeter, Kwiat and Jeffery [5].

However, this approach has a problem - it drastically overstates confidence when

the point estimate P̃ j is small. For example, suppose we know we have the single-

qubit state ρ =α|0〉〈0|+ (1−α)|1〉〈1|, for some unknown α. Now, suppose we measure

Z on just a single copy, and get the outcome −1 (which occurs with probability 1−α).

The maximum likelihood state consistent with the data is the state ρMLE = |1〉〈1|, and

our maximum likelihood estimate of P j is P̃ j = 1
2 [tr(ρMLE Z)+1]= 0. Hence the Monte

Carlo samples are drawn from the distribution Po(0), a Poisson distribution with zero

variance; and their sample standard deviation will be zero. The outcome is that, after

taking only a single measurement and knowing essentially nothing about α, we are

forced to conclude that the state was exactly ρ = |1〉〈1|, with absolute confidence.

The estimate P̃ j can be small in two ways: either P j isn’t small, but we have not

taken a sufficient number of measurements to guarantee that P j and P̃ j are close

and have just been unlucky; or P j itself is small. One could argue that the former is

absolved when considering data sets of a reasonable size. However, a well-behaved

confidence interval should, in principle, decrease monotonically in size with

increasing data. This is not the case here - after a single measurement we have

vanishing error bars, and if this artefact is to be corrected by taking more data, the

error bars would have to experience an anomalous period of growth. The latter case
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is more problematic; for most states of interest that we would like to verify, it is very

often the case that we expect P j to be small. Indeed, the DFE protocol in [85]

explicitly uses this fact to derive an advantage over state tomography for useful

quantum states (see the discussion on “well-conditioned” states in § 2.1.4).

In the case of output from the photonic chip, we can be more concrete about the

magnitude of this problem. Given the tomographic data set used to construct

Fig. 4.8, we can carry out the photonic estimation protocol, above. Point estimates

are constructed by the same maximum likelihood technique as in Fig. 4.8, and

errors bars are constructed from the photonic estimation protocol assuming M = 100

artificial Monte-Carlo states. The resultant comparison of the protocol derived in

this chapter and photonic estimation is shown in Fig. 4.10. We expect for states of

the form |ψ〉 = sinθ|00〉 + cosθ|11〉 that most Pauli expectation values are close to

zero, and that this problem is particularly apparent; and certainly, the data from the

photonic estimation protocol in Fig. 4.10 is consistent with the hypothesis that the

protocol systematically overstates the confidence in the point estimate. Across the

entire data set, the error bar for photonic estimation is close to an order of

magnitude smaller than for our fidelity estimation protocol. The fact that there is no

overlap between the confidence intervals, particularly in the range 0 ≤ θ ≤ π
4 , is

enough to arouse suspicion. One could make the same counterargument as in § 2.5:

different measurement settings are used in each protocol, and so it is plausible that

there is some systematic error in the way the chip applies the measurements in

Thm. 18 that is not present for Pauli measurements, leading to lower point

estimates in the fidelity. Additionally, in this case there must also be some random

error when these measurements are applied that is not present for Pauli

measurements, leading to greater uncertainty in these estimates. However if this is

true, we can draw the same conclusion: then there is some physical flaw in the

fabrication, calibration or operation of the chip that is entirely overlooked by the

photonic estimation protocol.

While this should not be considered an exhaustive discussion of the problems

with photonic estimation, it should be enough to make the reader wary of any error

bar derived in this manner. The problem is compounded by the fact that none of the

following example papers: [133, 207, 42, 226, 43, 228, 48, 198, 211, 197, 227, 229],

nor any paper that uses photonic estimation that is known to the author, either (i)

present a statistical analysis of their technique for deriving error bars beyond a single

phrase appealing to “Poisson statistics”; or (ii) provide a reference that discusses the

analysis in more detail. This is particularly troubling when there is a substantial

body of literature dedicated to deriving meaningful confidence intervals in quantum

state tomography.
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4.5 Outlook

The protocol we have derived and discussed above represents a clear step forward in

the ability to estimate the fidelity of quantum states produced by a particular device

or experiment. Broadly, the protocol is advantageous in the following respects: (i)

given a fixed number of trials, it outputs significantly smaller error bars on its point

estimate than its closest counterparts; (ii) it is constructed from non-Pauli

measurements, and so may dig up coherent measurement errors that are not

observed when carrying out “Pauli” tomography alone; and (iii) it requires a

negligible amount of post-processing, in contrast with both maximum likelihood and

Bayesian tomography. On the other hand, given that we have shown that the

optimal verification protocols in Chapter 3 are also minimum-variance fidelity

estimation protocols, we are hamstrung by the fact that we were not able to derive

the optimal verification protocol for arbitrary pure states. It may well be the case

that, even if deriving optimal fidelity estimation protocols is analytically taxing,

that the framework in this chapter is sufficient to derive tight bounds on the

performance of any candidate protocol. If this is the case, the most prudent course of

action may be to explore ansatz protocols tailored to the state of interest.

We have also considered, in § 4.4, the most widely used procedure for deriving

error bars on operational quantities in photonics. Based on both the statistical

arguments and experimental data in § 4.4, it seems reasonable to conclude that this

procedure significantly and quantifiably overstates the confidence in which it makes

its point estimate. We hope that this evidence is sufficient for experimentalists in

the field to revisit their use of this protocol, and to instead consider more

statistically rigorous protocols (such as the one derived here, the direct fidelity

estimation protocol in [85], or the tomographic estimators in [213, 26, 54]).
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C H A P T E R 5

QUANTUM ALGORITHMS FOR THE FINITE

ELEMENT METHOD

The finite element method is used to approximately solve boundary value problems

for differential equations. Qualitatively, the method discretises the parameter space

and finds an approximate solution to the differential equation by solving a large

system of linear equations. In this chapter, we investigate the extent to which the

finite element method can be accelerated using an efficient quantum algorithm for

solving linear equations. We consider the representative general question of

approximately computing a linear functional of the solution to a boundary value

problem, and compare the quantum algorithm’s theoretical performance with that of

a standard classical algorithm – the conjugate gradient method. We will find that

the quantum algorithm can achieve a polynomial speedup, the extent of which

grows with the dimension of the partial differential equation. On the other hand,

this speed up is the most we can hope to achieve; we will see that no improvement of

the quantum algorithm could lead to a super-polynomial speedup when the

dimension is fixed and the solution satisfies certain smoothness properties.

5.1 Introduction

The development of a quantum algorithm for solving large systems of linear

equations is an exciting recent advance in the field of quantum algorithmics. First

introduced by Harrow, Hassidim and Lloyd [104], and later improved by other

authors [6, 52, 232], the algorithm gives an exponential quantum speedup over

classical algorithms for solving linear systems (see § 5.5 for a primer). However, the

quantum linear equation (QLE) algorithm “solves” a system of equations Ax = b in

an unusually quantum sense. The input b is provided as a quantum state |b〉, and

the algorithm produces another state |x〉 corresponding to the desired output x.

Whether this is considered to be a reasonable definition of “solution” depends on the
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intended application [1]. Still, linear equations are so ubiquitous in science and

engineering that many applications of the QLE algorithm have been proposed,

ranging from machine learning [142, 127, 128] to computing properties of electrical

networks [225].

One area in which large systems of linear equations naturally occur is the finite

element method (FEM) [10, 56, 34, 191]. The FEM is a technique for efficiently

finding numerical approximations to the solutions of boundary value problems

(BVPs) for partial differential equations, based on discretising the parameter space

with a finite mesh. The FEM is a tempting target for acceleration by the QLE

algorithm for several reasons:

1. The large systems of linear equations that occur in the FEM are produced

algorithmically, rather than being given directly as input, which avoids

efficiency issues associated with needing to access data via a quantum

RAM [142, 1];

2. The FEM naturally leads to sparse systems of linear equations, which is usually

a requirement for quantum speedup via the QLE algorithm;

3. The FEM gives an analytic expression for the condition number (a quantity

characterising the “invertibility”) of the matrix A, which can be folded in to the

overall complexity;

4. The FEM has many important practical applications. These include structural

mechanics, thermal physics and fluid dynamics [191]. Any quantum speedup

for the FEM would thus represent a compelling application of quantum

computers.

In this chapter we work through the details of applying the QLE algorithm to the

general FEM, and compare the worst-case performance of the quantum algorithm

with that of a ubiquitous classical algorithm.

5.1.1 Organisation and notation

Readers that wish to skip directly to the results comparing quantum and classical

algorithms for the FEM will find them in § 5.7.

We begin, in § 5.2, by detailing the prior art regarding quantum algorithms for

solving differential equations. We will then introduce the FEM by a simple example,

before treating it more formally, in § 5.3. This framework will then be used to derive a

complexity of a classical algorithm for the FEM in § 5.4. § 5.5 outlines the structure of

the QLE algorithm, and § 5.6 goes through the details of applying the QLE algorithm

to the FEM and determines its complexity. In § 5.8 we describe various limitations

104



5.2. PRIOR ART

on the quantum algorithm. We conclude in § 5.9 with some discussion and open

problems.

We will need to deal with continuous functions, their discretised approximations

as vectors, and their corresponding quantum states. Italics denote functions, boldface

denotes vectors, and quantum states (usually normalised) are represented as kets.

We often let Ω ⊆ Rd denote an arbitrary convex set. For a function f ∈ L2(Ω), ‖ f ‖ :=(∫
Ω f (x)2dx

)1/2 denotes the L2 norm of f . For a vector f, ‖f‖ := (∑
i f2

i
)1/2 denotes the

`2 norm of f.

If we call a solution to the PDE u ∈ Fd, we will often use the term “spatial

dimension” as shorthand for d, and as distinct from the dimension of the vector

space used for a discretised approximation of the solution of a PDE, or the

dimension of the Hilbert space acted on by a quantum algorithm. This is merely for

convenience and should not be taken to mean that the only PDEs of interest are

those in which the degrees of freedom are physical spatial dimensions.

5.2 Prior art

The application of the QLE algorithm to the FEM has previously been studied by

Clader, Jacobs and Sprouse in [57]. In particular, they consider an electromagnetic

scattering cross-section problem solved via the FEM, and argue that the quantum

algorithm achieves an exponential speedup for this problem over the best classical

algorithm known. In order to achieve this result, the authors of [57] propose ways

to avoid issues with the QLE algorithm that can reduce or eliminate a quantum

speedup. For example, they show that the important classical technique known as

preconditioning, which reduces the condition number of the input matrix A, can be

applied within the quantum algorithm. We discuss preconditioning further in § 5.3.

However, the analysis of [57] does not fully calculate and combine all

contributions to the complexity of approximately solving the scattering cross-section

problem. The classical and quantum algorithmic complexity is calculated in [57] in

terms of two parameters: N (the size of the system of linear equations resulting

from applying the FEM), and ε (the solution accuracy). The size of the system of

equations is a parameter which can be chosen by the user in order to achieve a

desired accuracy (i.e. N and ε are formally related). In [57] they are treated as

independent parameters and hence the complexity analysis is left incomplete. If the

scaling of N with ε is benign, the classical algorithm might not need to solve a large

system of equations to achieve a given accuracy, so the quantum speedup could be

reduced or even eliminated. This is the reason for the apparent contradiction

between our results in § 5.7 and previous work [57].
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Specifically, there are two potential sources of error in producing the solution: (i)

the discretisation process which converts the differential equation to a system of

linear equations; and (ii) any inaccuracies in numerically solving the system of

equations itself and computing the desired function of the solution. The larger the

system of equations produced, the smaller the error in (i) is. The QLE algorithm can

work with an exponentially larger set of equations in a comparable time to the

classical algorithm, so the error of type (i) can be made exponentially smaller.

However, the scaling with accuracy of the QLE algorithm’s extraction of a solution

from the system of linear equations is substantially worse than the classical

algorithm; the quantum algorithm has an exponentially larger error of type (ii). If

only the error in (i) is considered, it may appear that the quantum algorithm yields

an exponential advantage. However, the effect of both type (i) and type (ii) errors,

when considered together, act in opposition and ultimately come close to cancelling

each other out.

We should also note that a full resource analysis of the algorithm specified by

Clader, Jacobs and Sprouse was carried out in [199].

An alternative approach to the approximate numerical solution of PDEs is the

finite difference method (FDM). This method is also based on discretisation of the

problem domain (in this instance, typically into a regular grid), but differs from the

FEM in that it derives a linear system of equations from the PDE by approximating

the partial derivatives in the original problem with finite differences.

The QLE algorithm can also be applied to the FDM. One example where this has

been done, and described in detail, is work of Cao et al. [41], who gave a quantum

algorithm for the Poisson equation in d dimensions. Their algorithm produces a

quantum state corresponding to the solution to the equation in time

O(max{d, log1/ε} log3 1/ε). Note that this scaling with ε is exponentially better than

the best general results on Hamiltonian simulation known at the time; their

algorithm used special properties of the Poisson equation to achieve an improved

runtime. The best classical algorithms require time ε−Ω(d) as they solve a discretised

version of the problem on a d-dimensional grid with cells of size ε × ε × ·· · × ε.

However, the quantum algorithm of Cao et al. [41] shares the property of the FEM

algorithms discussed here that, in order to extract some information from the

quantum state produced, one finishes with a scaling with ε which is poly(1/ε). In the

physically realistic setting of the dimension d being fixed and the accuracy ε being

the parameter of interest, this is only a polynomial improvement.

Other related work has given quantum algorithms for solving large systems of

sparse linear [21] or nonlinear [140] differential equations via Euler’s method. In

these cases the quantum algorithms can in principle achieve an exponential
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improvement over classical computation for approximately computing properties of

the solution to the system, if the system of equations is provided implicitly. Fleshing

out this approach requires also specifying how the equations are produced and how

the property of interest is computed. If the equations are generated by a

discretisation procedure such as the FDM, similar qualitative conclusions to those

we derive for the FEM seem likely to hold.

5.3 The finite element method

5.3.1 Warm-up: Poisson’s equation

Rather than beginning by providing a formal introduction to the FEM, it is easiest to

first motivate the procedure via an example. Imagine we would like to solve Poisson’s

equation on the interval [0,1], in one dimension:

∂2u
∂x2 = f (x); u(0)= ∂u

∂x
(1)= 0. (5.1)

We will often use notation ′ and ′′ to denote first and second derivatives, respectively.

Here f (x) is the input to the problem and we fix boundary conditions by specifying

u(0) and u′(1). Given a sufficiently smooth “test function” v ∈ L2[0,1] such that v(0)=
0, one can multiply both sides by v and then integrate by parts:∫ 1

0
f (x)v(x)dx =

∫ 1

0
u′′(x)v(x)dx =−

∫ 1

0
u′(x)v′(x)dx. (5.2)

Assuming certain regularity properties of f , a function u which satisfies this equality

for all test functions v will satisfy Poisson’s equation. This is known as the weak

formulation of Poisson’s equation. The goal is to reduce this formulation to a problem

that is tractable computationally. The approximation is to consider solutions and test

functions that instead exist in some finite-dimensional subspace S of L2[0,1]. Denote

the approximate solution as ũ, such that ũ ∈ S ⊂ L2[0,1]. Commonly S is taken to be

the space of piecewise polynomial functions of some degree k; the choice of “pieces”

for these functions is the origin of the finite element mesh.

A particularly simple choice of basis for this example is the space of piecewise

linear functions on [0,1], divided up into N intervals of size h. A basis for this space

is the set of “tent” functions (see Fig. 5.1), defined as

φi(x)=



1
h

(x− xi−1) if x ∈ [xi−1, xi]

1
h

(xi+1 − x) if x ∈ [xi, xi+1]

0 otherwise.

(5.3)
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x0 x1 x2 x3 x4

Figure 5.1: A basis set of “tent” functions (the blue, or dotted, lines), for piecewise
linear functions defined on the line (an example of which is given by the red, or solid,
line). Any piecewise linear function can be uniquely specified as a sum of scaled tents.

More generally, consider some choice of basis for the space S, denoted by B = {φi},

such that |B| = N. We choose a basis such that φi(0)=φ′
i(1)= 0, so that every function

in S satisfies the boundary conditions. Then ũ can be expanded in this basis: ũ =∑
j U jφ j. The corresponding weak formulation of Poisson’s equation is

−∑
j

U j

∫ 1

0
φ′

j(x)v′(x)dx =
∫ 1

0
f (x)v(x)dx. (5.4)

For this condition to hold for all v ∈ S, it is sufficient for it to hold on all basis functions

φi:

−∑
j

U j

∫ 1

0
φ′

j(x)φ′
i(x)dx =

∫ 1

0
f (x)φi(x)dx. (5.5)

If we define N-dimensional vectors ũ and f̃ such that

ũi =Ui, f̃i =
∫ 1

0
f (x)φi(x)dx (5.6)

and an N ×N matrix M such that

Mi j =
∫ 1

0
φ′

i(x)φ′
j(x)dx, (5.7)

then the approximate solution to Poisson’s equation can be determined by solving the

linear system

Mũ= f̃. (5.8)

5.3.2 The FEM for more complicated PDEs

This general procedure (expressing the PDE in the weak formulation, discretising by

choosing a finite element mesh and basis functions and solving the resultant linear

system of equations) can be extended to far more complicated PDEs, domains and

boundary conditions. We will now give a brief pedagogical outline of the general
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framework for each of these steps, for more complicated PDEs than the Poisson’s

equation example above.

We will be concerned with PDEs defined over some convex set Ω ⊂ Rd. Given

that we are operating in more than one dimension, it will be useful to introduce

a shorthand for derivatives with respect to multiple degrees of freedom. Let α =
(α1, . . . ,αd) be a multi-index (i.e. a list of d non-negative integers). We’ll use the

shorthand |α| :=∑
iαi, and denote mixed derivatives as ∂α :=

(
∂
∂x1

)α1
. . .

(
∂
∂xd

)αd
. Thus

each element α j in the list α indicates the order of the derivative to be taken with

respect to coordinate j.

The notion of a weak derivative, or of a weak solution as introduced in the above

discussion on Poisson’s equation, is designed to derive solutions with derivatives that

need not exist, but nonetheless satisfy the equation in a particular sense. Broad

classes of useful PDEs admit weak solutions that would not be reachable by other

methods. The weak derivative generalises from the “integration by parts” procedure

we used for the Poisson equation; the idea is to sidestep considering derivatives of

the solution, by “transferring” them to derivatives of a test function. If we have some

integrable function g :Ω→ R, then if there is an integrable function h :Ω→ R such

that ∫
Ω

h(x)v(x)dx = (−1)|α|
∫
Ω

g(x)∂αv(x)dx, ∀v ∈ C∞(Ω), (5.9)

then we say that h is a weak derivative of g. Note that this is exactly the same

procedure we used previously; start from h(x)= ∂αg(x), multiply by the test function

v(x), and then integrate. The prefactor (−1)|α| is accrued from the minus signs picked

up by integrating by parts |α| times.

Given the notion of weak derivatives, there is a natural norm that arises. We will

use the notation | · |m to denote the Sobolev (2-)seminorm

|v|m :=
( ∑
α,|α|=m

‖∂αv‖2

)1/2

. (5.10)

That is, the seminorm acts like the L2 norm over all partial derivatives of order m.

The Sobolev m-norm is then simply defined by ‖v‖m :=∑m
i=0 |v|i. Note that, for m = 0,

|v|m = ‖v‖m = ‖v‖. (5.11)

Now, consider a linear BVP of the form

D[u(x)]=∑
α

cα(x)∂αu(x)= f (x), (5.12)

for some differential operator D, some x ∈Rd, and some sufficiently smooth functions

cα(x). The weak formulation of this expression given some test function v(x) is then∫
Ω

f (x)v(x)dx =
∫
Ω

[∑
α

(−1)|α|∂α(cα(x)v(x))
]

u(x)dx :=
∫
Ω
D′[v(x)]u(x)dx. (5.13)
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Denote the lefthand side as ( f ,v), the usual inner product for square-integrable

functions, and the righthand side as a(u,v). a(u,v) is asymmetric, and so is not an

inner product, but it is a bilinear form. If we let the space of test functions be

V = {v ∈ L2(Ω) : a(v,v) < ∞}, then V is a subspace of the Hilbert space L2(Ω), with

inner product (·, ·) and norm ‖v‖V =p
v,v. The weak formulation of the BVP is then

succinctly written:

Find u ∈V such that a(u,v)= ( f ,v), ∀v ∈V . (5.14)

It is intuitive that if the BVP has a strong solution, that it must also satisfy Eq. 5.14.

However if a strong solution does not exist or cannot be found, it is unclear whether

Eq. 5.14 is a stringent enough formulation to lead to unique solutions. Luckily, the

Lax-Milgram theorem (see [34], § 2.6, and [10], § 3.2) guarantees both the existence

and uniqueness of solutions to the formulation in Eq. 5.14:

Theorem 28 (Lax-Milgram [135]). Let V be a Hilbert space with bilinear form a(·, ·),
such that a is both:

1. Bounded: |a(u,v)| ≤ A‖u‖V‖v‖V , and

2. Coercive: |a(u,u)| ≥ B‖u‖2
V ,

for some constants A and B. Then for any f , there is a single unique solution to the

problem

a(u,v)= ( f ,v). (5.15)

The details of the domain Ω, the Hilbert space V , and the bilinear form a(·, ·) are

governed by the BVP in question. Here we choose not to specify which PDE we wish

to solve, as the details of this procedure for particular PDEs will not be very

significant when making a general comparison of quantum and classical algorithms

for the FEM. However, we will restrict to elliptic second-order PDEs throughout.

The restriction to elliptic PDEs guarantees that the coercivity property of a(·, ·) is

automatically satisfied, and so we do not need to worry about the existence and

uniqueness of solutions to the PDE in the weak formulation, given the Lax-Milgram

theorem. For further discussion on coercivity in PDEs, see [77]. Even with this

restriction, the following analysis captures many examples of physical interest; for

example, electrostatics, subsonic fluid dynamics and linear elasticity.

All that remains is to discretise the problem, to make it amenable to numerical

methods. Given the form Eq. 5.14, its discretised form is remarkably simple to state;

if we let S be a finite-dimensional subspace of V , then the problem becomes

Find ũ ∈ S such that a(ũ,v)= ( f ,v), ∀v ∈ S. (5.16)
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This is commonly known as the Ritz-Galerkin approximation. Not only is this

approximation simple to state, but it is optimal, in some sense:

Theorem 29 (Cèa [44]). Given that the conditions for the Lax-Milgram theorem are

satisfied, and that the Ritz-Galerkin approximation to the solution u is denoted ũ,

then

‖u− ũ‖V ≤ A
B
‖u−v‖V , ∀v ∈ S. (5.17)

Thus the Ritz-Galerkin solution ũ is the closest approximation to the solution u

in the finite subspace S (up to a constant).

The choice of the finite subspace S is the mathematical origin of the “finite

elements”. The uniform division of [0,1] into equal intervals that we saw in the 1D

case is replaced with a suitably regular division of the domain into a mesh, whose

elements are usually polygons (for example, triangles) or polyhedra. An example of

a mesh is shown in Fig. 5.2. The space S is replaced with the space of piecewise

polynomials of degree k on the elements of the mesh, with a basis {φi} of

polynomials supported only on adjacent mesh elements. Finally, the matrix M that

we must invert, and is defined in Eq. 5.7 for the Poisson equation example, is

modified such that Mi j = a(φi,φ j), where a(u,v) is the bilinear form whose precise

details depend on the PDE in question.

Preconditioning can be seen as replacing the matrix M with a matrix M′ = PM for

some “preconditioner” P, and solving the new system of linear equations M′ũ= P f̃.
While preconditioners are commonly used as a subroutine in classical matrix

inversion algorithms, one of the goals of the work by Clader, Jacobs and Sprouse [57]

was to show that the sparse approximate inverse (SPAI) preconditioner can be used

within the overall framework of the QLE algorithm. In the SPAI preconditioner, P is

chosen such that P ≈ M−1 and also that P is sparse. The sparsity desired is a

parameter of the algorithm; although one has no guarantees that either P or PM

will be sparse while PM achieves a low condition number, in practice this is often

the case. The structure of the SPAI is designed such that queries to entries of PM

can be computed from queries to M with a modest overhead [57].

5.4 Solving the FEM with a classical algorithm

The goal of this section is derive a computational complexity that is representative

of classical algorithms for solving BVPs via the FEM. However, as we will see in

§ 5.6, the quantum algorithm is hampered with respect to classical algorithms in

that it does not allow the full solution u to a given BVP to be obtained, but does

allow certain properties of u to be approximately computed. Thus in order to fairly

compare classical and quantum algorithms for solving general BVPs in § 5.7, for both
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Figure 5.2: An example of a “mesh” – a discretisation of the domain over which the
PDE is defined. Each polygon is a “finite element”, with basis functions defined upon
them. The shading of each polygon here represents the amplitude associated with
the function supported on each finite element. As a physical example, the diagram
could represent the material stress on a plate, induced by a deformation by a rod.

the classical and quantum case we consider the representative problem of computing

a linear functional of u. That is, for some known function r :Ω→R, where Ω⊂Rd, we

seek to compute

〈r,u〉 :=
∫
Ω

r(x)u(x)dx. (5.18)

This is one of the simplest properties of u one could hope to access. In general, we

do not have complete knowledge of u, but have some approximation ũ. Although

there are many sensible norms with which one could measure the quality of this

approximation, one natural choice is the L2 norm ‖ f ‖ := (∫
Ω f (x)2dx)2)1/2. Then

|〈r, ũ〉−〈r,u〉| = |〈r, (ũ−u)〉| ≤ ‖r‖‖ũ−u‖ (5.19)

by the Cauchy-Schwarz inequality. Hence an accuracy of ε in L2 norm in an

approximation of u translates into an additive error of at most ε‖r‖ in an

approximation of 〈r,u〉. Therefore, approximating 〈r,u〉 up to accuracy ε‖r‖ will be

the prototypical problem considered throughout.

5.4.1 Approximation errors

If u is the exact solution to a BVP, henceforth let ũ be the continuous, exact solution

corresponding to the discretised problem in Eq. 5.8; ũ is the solution that a perfect

linear-system solver, given an arbitrarily long period of time, would find. In general,

however, the linear-system solver is iterative and so will not truly reach ũ; so also let˜̃u be the continuous, approximate solution generated by the linear-system solver.

Crucially, one can show that ũ can be made quite close to u by taking a

sufficiently fine mesh. Indeed, consider a second order differential equation defined

over a polygonal, d-dimensional domain (or equivalently, define d as the number of

degrees of freedom in the PDE). Then, take an infinite, ordered family of
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progressively finer meshes {Mr}∞r=1, constructed from a triangulation of the domain

with simplices of dimension d. Let k be the total degree of the polynomials used as

basis functions (so for example, k = 1 if we use the “tent” functions in Fig. 5.1). We

assume throughout that both d and k are fixed. Given a parameter m ∈ N, and

provided that d > 2(k−m), that all angles in the mesh are bounded below by some

fixed value, and that the greatest edge length h in the mesh goes to zero, then the

following bound is known ([56], Thm. 3.2.1):

|u− ũ|m ≤ Chk+1−m|u|k+1, h → 0, (5.20)

assuming that weak derivatives of u of order m exist. Here C is a constant,

independent of h (but not necessarily independent of d or the definition of the

mesh). Setting m = 0 and given the equivalence of the Sobolev 0-seminorm, 0-norm

and the L2 norm in Eq. 5.11, we have ‖u− ũ‖ ≤ C hk+1|u|k+1.

The overall level of inaccuracy in approximating u with ˜̃u (and hence computing

〈r,u〉 from ˜̃u) can be bounded using the triangle inequality:

‖u− ˜̃u‖ ≤ ‖u− ũ‖+‖ũ− ˜̃u‖. (5.21)

To achieve a final error of ε‖r‖ in computing 〈r,u〉 it is sufficient to achieve ‖u− ũ‖ ≤
ε/2, ‖ũ− ˜̃u‖ ≤ ε/2. Thus, by Eq. 5.20, we can take a mesh such that

h =O

((
ε

|u|k+1

)1/(k+1)
)

. (5.22)

Observe that |u|k+1 might be initially unknown. In the case of the simple instance of

the FEM discussed in the previous section, we had |u|k+1 = ‖ f ‖, so this bound could

be explicitly calculated. However, it can be nontrivial to estimate this quantity for

more complicated BVPs.

5.4.2 Classical complexity of the FEM

The overall complexity of solving a BVP via the FEM is governed by the

dimensionality of the problem being solved, the choice of finite element basis, and

the desired accuracy criteria. These feed into the complexity of solving the required

system of linear equations.

As the matrix M to be inverted is a Gram matrix it is necessarily positive

semidefinite. Also, the basis φi is almost universally chosen such that each basis

vector only has support on a small number of finite elements, with the implication

that M is sparse, i.e. has s = O(1) nonzero entries in each row. The most common

choice of algorithm for inversion of matrices of this type (large, sparse, symmetric

and positive semidefinite) is the conjugate gradient method [205] (for discussion in
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the context of the FEM, see [10], § 1.3). This method uses time O(Ns
p
κ log1/εCG) to

solve a system Mũ = f̃ of N linear equations, each containing at most s terms, with

condition number κ = ‖M‖‖M−1‖, up to accuracy εCG in the “energy norm”

‖x‖M :=
p

xT Mx.

We now estimate the values of each of the parameters in this complexity, first

calculating the required size N. Let P be a basis for the space of polynomials of

total degree k in d variables. To construct a basis for the space of piecewise degree-

k polynomials on the mesh, it is sufficient, for each finite element in the mesh, to

include functions defined to be equal to a corresponding function in P on that finite

element, and zero elsewhere. Then the total size of the basis is N = O(h−d). Using

Eq. 5.22, to achieve a final discretisation error of ε/2 we can take

N =O

(( |u|k+1

ε

) d
k+1

)
. (5.23)

We next determine the required accuracy εCG . Let a be the inner product defining M,

such that Mi j = a(φi,φ j). This inner product induces the energy norm (on functions)

‖u‖E := √
a(u,u). Use of this norm makes it easy to interpret the error from the

conjugate gradient method, as one can readily calculate that

‖ũ− ˜̃u‖E = ‖ũ− ˜̃u‖M . (5.24)

It follows from coercivity of a (see § 5.3) that ‖ũ− ˜̃u‖ ≤p
B‖ũ− ˜̃u‖E. To achieve ‖ũ−˜̃u‖ ≤ ε/2 it is therefore sufficient to take εCG =O(ε).

The scaling of κ, the condition number of M, with the size and shape of the mesh

is discussed extensively in [13] and [34, Chapter 9]. Assume that d ≥ 2. Denote

a particular triangulation of the domain Ω into finite elements as T, and let the

expression supp(φi)∩T denote the set of finite elements where the basis function φi

has support. Then we assume that there exists a universal constant C such that the

basis functions φi satisfy

C−1hd−2‖v‖L∞(T) ≤
∑

supp(φi)∩T 6=;
v2

i ≤ Chd−2‖v‖L∞(T) (5.25)

for any function v such that v = ∑
i viφi, and any triangulation T; this fixes the

normalisation of the basis functions, and applies for all but the most irregular

meshes. Then, for a wide range of relatively regular meshes, the largest eigenvalue

λmax(M) = O(1) and the smallest eigenvalue λmin(M) = Ω(N−2/d), so κ = O(N2/d).

Finally, we have s = O(1) by our assumption about the supports of the basis

elements φi. The overall complexity of the algorithm is thus

O

(( |u|k+1

ε

) d+1
k+1

log
1
ε

)
. (5.26)
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In many practical cases, however, we have seen that preconditioning is applied in

order to reduce this scaling by improving the condition number. A number of

different preconditioners are known; one frequently used example in the case of the

FEM is the sparse approximate inverse (SPAI) preconditioner. Although there is no

guarantee that this preconditioner can improve the condition number in the worst

case, experimental results suggest that it can be very effective in practice [18, 19,

141, 182]. If the condition number were reduced to the best possible scaling O(1), we

would obtain a “best case” runtime of the classical algorithm which is

O

(( |u|k+1

ε

) d
k+1

log
1
ε

)
. (5.27)

We remark that the preconditioned matrix M′ may no longer be symmetric. The

dependence of the conjugate gradient method on the condition number κ is

quadratically worse for non-symmetric matrices, but as we have assumed that

κ=O(1) following preconditioning, this does not affect the complexity.

The best classical runtime following this approach is then found by optimising

over allowed values of k. Observe that in either case, if |u|k+1 and d are fixed, this

complexity is bounded by a polynomial in 1/ε.

5.5 The HHL algorithm

We will now outline the current state of the art regarding quantum algorithms for

solving linear systems of equations; it is these quantum algorithms that we will

compare against classical iterative solvers, such as the conjugate gradient method.

The first quantum algorithm for solving linear systems was published by Harrow,

Hassidim and Lloyd [104] (and carries their initialism, “HHL”). The HHL algorithm

produces the solution to the matrix equation Ax′ =b in a particular, quantum sense.

If we let A be an N × N matrix, then from the previous section we know that the

conjugate gradient method (and most classical iterative methods) runs in time O(N).

But any algorithm, quantum or classical, that takes b as input and produces an

approximation to x′ as output needs time O(N) just to read in, and write out, these

vectors. Hence any fast quantum algorithm for inverting the matrix A will be

swamped by the I/O time in this case, and any quantum advantage in N will vanish.

Instead, the HHL algorithm assumes that we have oracular access to copies of a

quantum state |b〉 =b/‖b‖, which is somehow easy to produce (i.e. that it is produced

in time O(polylog(N))). Additionally, the output is the matching quantum state over

log(N) qubits, |x〉 = x′/‖x′‖, rather than a vector of N bits. Given this setup, the

runtime of the HHL algorithm is as follows:
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Theorem 30 (Harrow, Hassidim and Lloyd [104], Ambainis [6]). Let A be an N ×N

Hermitian matrix such that ‖A‖‖A−1‖ ≤ κ, and A has at most s nonzero entries in

each row. Assume there is an algorithm PA which, on input (r, i), outputs the location

and value of the ith nonzero entry in row r. Let b be an N-dimensional unit vector,

and assume that there is an algorithm Pb which produces the corresponding state |b〉.
Let

x′ = A−1b, |x〉 = x′

‖x′‖ . (5.28)

Then there is a quantum algorithm which produces the state |x〉 up to accuracy ε in `2

norm, with bounded probability of failure, and makes the following number of calls to

PA and PB:

PA : O ((sκ/ε)poly(log(sκ/ε))) ; (5.29)

PB : O (sκpoly(log(sκ/ε))) . (5.30)

The runtime is then

O ((sκ/ε)poly(log(sκ/ε)) log(N)) . (5.31)

We will now give a brief flavour of the steps in the algorithm. We should point out

that each step in the sketch below (producing |b〉, applying phase estimation and

postselecting on the state of an ancilla) only produce approximations to the

intermediate states we will describe; hence the analysis is significantly more

involved than the quick summary here.

Let the initial input to the algorithm be the state |b〉 = ∑
i bi|i〉, where the

amplitudes bi are the (suitably normalised) entries in b. Alternatively, let the

eigenvalues and eigenvectors of A be labelled by λ j and |u j〉, respectively. Then we

can rewrite |b〉 in this eigenbasis: |b〉 = ∑
jβ j|u j〉. Then, after using Hamiltonian

simulation techniques to apply eiAt and applying phase estimation, the output is

∼∑
jβ j|u j〉|λ j〉. Our next goal is to apply the (non-unitary) map |λ j〉→ Cλ−1

j |λ j〉. We

append an ancilla qubit, and perform a rotation on it conditioned on the register

|λ j〉, yielding ∼ ∑
jβ j|u j〉|λ j〉

(√
1−C2/λ2

j |0〉+C/λ j|1〉
)
. We then measure the ancilla

in the computational basis and postselect on the measurement outcome −1; after

this step, the output is ∼ ∑
jβ jλ

−1
j |u j〉|λ j〉|1〉. All that is left is to discard the ancilla

qubit, yielding a state ∼∑
jβ jλ

−1
j |u j〉 = |x〉, as desired.

The dominant source of error in this algorithm comes from the phase estimation

step, which runs in time O(κ/ε). The contribution by Ambainis [6] was to use variable-

time amplitude amplification to reduce the dependence on κ in the overall algorithm

from quadratic to linear. The authors of [104] are also able to place tight restrictions

on any improvements to this algorithm. Specifically, if the dependence on κ is reduced

to polylogarithmic then one can show BQP = PSPACE, and if the dependence on ε for
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the task of outputting an expectation value over |x〉, rather than the state |x〉 itself

is reduced to polylogarithmic in 1/ε, then BQP = PP. Both of these equalities are

considered very unlikely. On the other hand, they also show that the problem of

matrix inversion is BQP-complete, and so we do not expect any classical algorithm to

match the polylogarithmic dependence on N of the HHL algorithm.

The original HHL algorithm has since been superseded by an improved algorithm

by Childs, Kothari and Somma [52]:

Theorem 31 (Childs, Kothari and Somma [52]). Let A be an N×N Hermitian matrix

such that ‖A‖‖A−1‖ ≤ κ, and A has at most s nonzero entries in each row. Assume

there is an algorithm PA which, on input (r, i), outputs the location and value of the

i’th nonzero entry in row r. Let b be an N-dimensional unit vector, and assume that

there is an algorithm Pb which produces the corresponding state |b〉. Let

x′ = A−1b, |x〉 = x′

‖x′‖ . (5.32)

Then there is a quantum algorithm which produces the state |x〉 up to accuracy ε in `2

norm, with bounded probability of failure, and makes

O (sκpoly(log(sκ/ε))) (5.33)

uses of PA and Pb. The runtime is the same up to a poly(log N) factor.

In particular, for the task of producing the quantum state |x〉, this algorithm is

exponentially faster in 1/ε than the original HHL algorithm. The improvement over

the prior algorithm is to note that the dependence on 1/ε is wholly derived from phase

estimation, and to sidestep its use for a much more direct method. Rather than phase

estimation, the algorithm in [52] directly applies the matrix A−1 to the input state |b〉
by decomposing A−1 into a summation of efficiently implementable unitaries. They

then give a procedure for applying this sum directly, that only requires O(polylog(1/ε))

calls to PA and PB.

There have been recent advances in algorithms for this problem, in particular

results that apply even when the matrix is non-sparse [232]. Here, the algorithm

retains the same dependence on κ and ε, but the dependence on the sparsity is

replaced with a linear dependence on a quantity that is upper bounded by the

Frobenius norm of A, ‖A‖F . In certain instances (for example, when A is dense but

low rank), the sparsity could be Ω(N) and the Frobenius norm O(1), which would

imply an exponential advantage over the algorithm in [52]. However, the linear

systems arising in the finite element method are O(1) sparse, by design; as such, we

will rely on the algorithm of Childs, Kothari and Somma [52] at the expense of a

constant factor in runtime, in the worst case.
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5.6 Solving the FEM with a quantum algorithm

The key step towards solving the FEM more quickly using a quantum computer is to

replace the classical algorithm for solving the corresponding system of linear

equations with the quantum algorithm in Theorem 31. We will also need to

approximate the Euclidean norm of the solution, ‖x′‖. The most efficient approach

to achieve this appears to be based on the original HHL algorithm. The number of

uses of PA required to estimate ‖x′‖ up to accuracy ε‖x′‖ can be shown to be

O((sκ2/ε)polylog(sκ/ε)); (5.34)

the number of uses of Pb required is O(κ/ε). Assuming that PA and Pb can each be

implemented in time poly(log N), the runtime of the algorithm is

O((sκ2/ε)polylog(Nsκ/ε)). (5.35)

As we were unable to find statements of these bounds in the literature, we sketch the

argument behind them in Appendix C.1.

Here we will apply these results to the linear system Mũ = f̃. We see from the

above bounds that the complexity of the overall quantum algorithm for solving the

FEM is determined by the following parameters:

1. The complexities of the algorithms PM and P f̃ , which respectively determine

elements of M and (approximately) produce | f̃ 〉;

2. The condition number κ and sparsity s of the matrix M;

3. The complexity of determining some quantity of interest given a state which

approximates |ũ〉.

These quantities will depend in turn on the desired accuracy of the output. We now

investigate each of them.

Note that most of the algorithms we use will have some arbitrarily small, but

non-zero, probability of failure. We assume throughout that failure probabilities have

been made sufficiently low that they can be disregarded.

5.6.1 Preparing the input

The purpose of this section is to discuss the time to prepare the input state | f̃ 〉 (i.e.

the complexity of the subroutine P f̃ required for the QLE algorithm). To achieve an

efficient algorithm overall, we would like to be able to prepare | f̃ 〉 in time

poly(log N). Rather than rely on a quantum RAM to provide | f̃ 〉, we instead refer to
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a scheme introduced by Zalka [236], and independently rediscovered by both Grover

and Rudolph [98] and Kaye and Mosca [125].

The scheme can be used to produce a real quantum state |ψ〉 of n qubits in time

polynomial in n, given the ability to compute the weights

Wx := ∑
y∈{0,1}n−k

|〈xy|ψ〉|2 (5.36)

for arbitrary k = 1, . . . ,n and arbitrary x ∈ {0,1}k in time poly(n), as well as the ability

to determine the sign of 〈x|ψ〉 for arbitrary x in time poly(n).

To approximately produce |ψ〉 up to a high level of accuracy (e.g. O(2−n)) in time

polynomial in n, it is actually sufficient to be able to approximately compute each

weight Wx up to accuracy ε in time O(log1/ε), for arbitrary ε. We sketch the argument

as follows. The algorithm of [236, 98, 125] is designed to produce a state |ψ′〉 with

non-negative amplitudes in the computational basis, such that 〈x|ψ′〉 = |〈x|ψ〉 | =√
Wx

for all x ∈ {0,1}n, and then flips the signs of amplitudes as required. To produce |ψ′〉
the algorithm expresses Wx, for each x ∈ {0,1}n, as a telescoping product

Wx =Wx1 ×
Wx1x2

Wx1

× Wx1x2x3

Wx1x2

×·· ·× Wx

Wx1...xn−1

, (5.37)

computes each fraction in turn (in superposition), and uses this to set 〈x|ψ′〉. If the

goal is to produce |ψ〉 up to accuracy ε in `2 norm, from the inequality (| 〈x|ψ〉 | −
|〈x|ψ′〉 |)2 ≤ |〈x|ψ〉2−〈x|ψ′〉2 | it is sufficient to approximate each weight Wx, x ∈ {0,1}n,

up to additive error O(ε2/2n). So the product can be truncated at the point i where the

weight Wx1...xi = O(ε2/2n), because any subsequent multiplications can only decrease

Wx, and weights below this size can be ignored.

If the algorithm does not compute weights Wx, Wy in some fraction Wx/Wy exactly,

but instead computes approximations W̃x and W̃y such that |W̃x−Wx| ≤ γWx and |W̃y−
Wy| ≤ γWy for some γ, then |W̃x/W̃y −Wx/Wy| = O(γWx/Wy). As we have assumed that

Wx =Ω(ε2/2n) for all k-bit strings x for which we compute Wx (1≤ k ≤ n), it is sufficient

to approximate each weight Wx up to additive accuracy O(ε2/(n2n)) for each fraction

to be accurate up to a multiplicative error of O(ε2/(n2n)) and hence the overall product

of weights to be accurate up to an additive error O(ε2/2n). From the assumption about

the complexity of the algorithm for approximately computing Wx, we can achieve this

level of accuracy in poly(n, log1/ε) time.

In the case of the FEM, the weights Wx correspond to quantities of the form

S(a,b) :=
b∑

i=a

(∫
Ω
φi(x) f (x)dx

)2
, (5.38)

where x ∈ Rd and a and b are integers. Expressions of this form can be computed

(either exactly or approximately) for many functions f of interest. For example,
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consider the 1-dimensional setting discussed in § 5.3. If f is a polynomial, then the

integral can be easily calculated, and corresponds to a polynomial in xi−1, xi and

xi+1. If the finite elements are regularly spaced, so xi = ih for some h, the entire sum

S(a,b) is a polynomial in a and b which can be explicitly calculated for any a and b.

For a choice of polynomial basis of degree k (i.e. where the (k+ 1)th derivative

φ(k+1)
i = 0), then from Darboux’s formula one has that

∫
Ω
φi(x) f (x)dx=

k∑
j=1

(−1) jφ
( j)
i (x)

∫
· · ·

∫
︸ ︷︷ ︸
j+1 times

f (x)dx. (5.39)

So, once the basis is specified, computing individual amplitudes is only as difficult as

integrating the function f (x). However, the state-production algorithm requires the

computation of weights which depend on up to N = 2n squared amplitudes. To obtain

an efficient algorithm, it is therefore necessary to find a more concise expression for

these sums.

As discussed above, this can be achieved when f is a polynomial and the finite

element mesh is suitably regular. This includes some physically interesting cases;

even a constant function f can be of interest. An efficiently computable expression

for S(a,b) can also be obtained when f is only supported on a few basis elements.

However, it appears challenging to compute this quantity efficiently for more general

functions f . Indeed, see § 5.8.3 for an argument that this should not be achievable in

general.

For simplicity in the subsequent bounds, we henceforth assume that the state | f̃ 〉
can be produced perfectly in time O(polylog N).

5.6.2 Solving the system of linear equations

Let M be the matrix defined by Mi j = a(φi,φ j). Recall from Theorem 31 that the

quantum algorithm assumes that it has access to an algorithm PM which, on input

(r, i), outputs the location and value of the i’th nonzero entry in row r (or “not found”

if there are fewer than i nonzero entries). If the finite element mesh is suitably

regular, PM is easy to implement. For instance, consider the set of n piecewise linear

functions on [0,1] defined in § 5.3. Then M is a tridiagonal matrix whose diagonal

elements are equal to 2/h, and whose off-diagonal elements are equal to −1/h. Hence

for r > 1,

PM(r, i)=



(r−1,−1/h) if i = 1

(r,2/h) if i = 2

(r+1,−1/h) if i = 3,

not found otherwise.

(5.40)
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More generally, it will be possible to implement PM efficiently if there is an efficient

procedure for mapping an index to a finite element, and for listing the neighbouring

elements for a given element. This will be the case, for example, when the finite

element mesh is a regular triangulation of a polygon. For discussion on automated

mesh generation and indexing schemes, see both [101] and [10, § 5.1].

When solving the system of linear equations, inaccuracies in the prepared state

| f̃ 〉 will translate into inaccuracies in the output state |ũ〉. Let | ˜̃f 〉 be the approximate

state that was actually prepared. Then the state produced after applying the QLE

algorithm is (approximately)
M−1| ˜̃f 〉

‖M−1| ˜̃f 〉‖ . (5.41)

If | f̃ 〉 is prepared up to accuracy ε in `2 norm, then the inaccuracy of the output state

in `2 norm is ∥∥∥∥∥ M−1| f̃ 〉
‖M−1| f̃ 〉‖ − M−1| ˜̃f 〉

‖M−1| ˜̃f 〉‖
∥∥∥∥∥ . (5.42)

Writing | ˜̃f 〉 = | f̃ 〉+ |ε〉 for some vector |ε〉 such that ‖|ε〉‖ = ε, this quantity is equal to∥∥∥∥∥ M−1| f̃ 〉(‖M−1| ˜̃f 〉‖−‖M−1| f̃ 〉‖)

‖M−1| f̃ 〉‖‖M−1| ˜̃f 〉‖ − M−1|ε〉
‖M−1| ˜̃f 〉‖

∥∥∥∥∥
≤ |‖M−1| ˜̃f 〉‖−‖M−1| f̃ 〉‖|

‖M−1| ˜̃f 〉‖ + ‖M−1|ε〉‖
‖M−1| ˜̃f 〉‖ (5.43)

≤ 2
‖M−1|ε〉‖
‖M−1| ˜̃f 〉‖ (5.44)

≤ 2εκ, (5.45)

by the triangle inequality, the reverse triangle inequality, and the definition of the

condition number κ. We therefore see that, if preconditioning is not applied to the

matrix M to reduce κ, it is necessary for | f̃ 〉 to be prepared up to accuracy O(N−2/dε).

(Note that this is not an issue if we can produce | f̃ 〉 exactly, as for some examples

discussed in the previous section.)

If preconditioning is used, we no longer need to prepare the initial state | f̃ 〉, but

a state proportional to P| f̃ 〉. Note that preparing the input P f̃ in the classical case

requires only multiplication of a vector by a sparse matrix, which is computationally

cheap compared to matrix inversion. As such, it is typically neglected when

considering the classical computational complexity. However, the situation is more

complicated in the quantum setting.

The most straightforward way to prepare P| f̃ 〉 is to construct | f̃ 〉 and then attempt

to apply the (non-unitary) operation P. There are several known approaches which

can be used to achieve this probabilistically. One elegant example is a simple special
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case of the “Chebyshev” approach of [52, §4]. This work uses a quantum walk to apply

nth order Chebyshev polynomials Tn(P) in an arbitrary s-sparse Hermitian matrix P.

(If P is not Hermitian, a standard trick [104] can be used to express it as a submatrix

of a Hermitian matrix.) As the first Chebyshev polynomial T1 is simply T1(x)= x, this

allows P itself to be implemented. If the subroutine of [52] succeeds when applied to

a state |ψ〉, then |ψ〉 is (exactly) mapped to P|ψ〉/‖P|ψ〉‖. The success probability is at

least
‖P|ψ〉‖2

s2‖P‖2
max

≥ 1
κ(P)2s2 , (5.46)

where ‖P‖max = maxi, j |Pi j| and we use ‖P‖max ≤ ‖P‖. Using amplitude

amplification, the failure probability can be made at most δ, for arbitrarily small

δ> 0, with O(1/(κ(P)s)) repetitions. Each repetition requires time polylogarithmic in

N, κ(P) and s.

Combining all these considerations, we see that if preconditioning is used, the

complexity of the quantum algorithm will depend on a number of different

parameters, each of which may be hard to estimate in advance. These are: the

condition number of PM; the complexity of computing entries of P; the sparsity of P;

and the condition number of P. Here, in order to give a “best case” comparison of the

preconditioned quantum algorithm with the classical algorithm, we make the

optimistic assumption that preconditioning is optimal (i.e. κ(PM) = O(1)), and that

taking all of these additional sources of complexity into account multiplies the

runtime by only a poly(log(N)) factor.

5.6.3 Measuring the output

By running the QLE algorithm, we obtain an output state | ˜̃u〉 which approximates

the normalised state

|ũ〉 =
∑

i ũi|i〉√∑
i ũ2

i

, (5.47)

where we associate each basis state |i〉 with the basis function φi. Given copies of

|ũ〉, we can carry out measurements to extract information about u. One example is

the prototypical problem we consider here, approximating the L2 inner product 〈u, r〉
between u and a fixed function r. This can be achieved by approximately computing

the inner product 〈ũ|r〉 between |ũ〉 and the state |r〉 defined by

|r〉 = 1
(
∑

i〈φi, r〉2)1/2

∑
i
〈φi, r〉|i〉 (5.48)

for some function r; then 〈ũ|r〉 is the L2 inner product between ũ and r, up to an

overall scaling factor. |r〉 can be produced using techniques described in the previous
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section. Some interesting cases are particularly simple: for example, taking r to be

uniform on a region, 〈ũ|r〉 gives the average of ũ over that region.

This inner product can be estimated using a procedure known as the Hadamard

test [4], a subroutine whose output is a ±1-valued random variable with expectation

〈ũ|r〉. By applying amplitude estimation [31] to approximately compute this

expectation, 〈ũ|r〉 can be estimated up to accuracy ε with O(1/ε) uses of algorithms to

produce the states |ũ〉 and |r〉. A related approach was used by Clader, Jacobs and

Sprouse [57] to compute an electromagnetic scattering cross-section, which

corresponds to a quantity of the form |〈ũ|r〉|2. This can be approximately computed

using the swap test [38], a subroutine which, given two states |ψ〉, |ψ′〉, outputs

“same” with probability 1
2 + 1

2 |〈ψ|ψ′〉|2, and “different” otherwise.

We remark that more complicated properties of u seem to be more problematic

to compute directly from the state |ũ〉, due to the non-orthogonality of the basis {φi}.

For example, one common use of the QLE algorithm is to determine similarity of

solutions to sets of linear equations by using the swap or Hadamard tests to compare

them [104, 6]. Consider two states |a〉, |b〉 corresponding to functions a = ∑
i aiφi,

b =∑
i biφi. Then

〈a|b〉∝∑
i

aibi (5.49)

while a sensible measure of similarity of the functions a and b is the inner product∫
Ω

a(x)b(x)dx=∑
i, j

aib j

∫
Ω
φi(x)φ j(x)dx. (5.50)

One would hope for this to be approximately proportional to
∑

i aibi. However,

although φi and φ j do not have overlapping support for most pairs i 6= j, there are

still enough such pairs where this overlap is nonzero that the integral can

sometimes be a poor approximation.

5.6.4 Overall complexity

The total complexity of the quantum algorithm for solving an FEM problem is found

by combining the complexities of all of the above pieces.

Assume that we would like to compute R := ∫
Ω r(x)u(x)dx for some r :Ω→ R up

to additive error ε‖r‖. Write α= (
∑

i〈φi, r〉2)1/2. The quantum algorithm will perform

the following steps by applying the QLE algorithm to the system of linear equations

Mũ= f̃:

1. Estimate ‖ũ‖ up to an additive term εN . Let Ñ be the estimate.

2. Use the QLE algorithm to produce copies of | ˜̃u〉, an approximation to |ũ〉. Use

these to estimate 〈r| ˜̃u〉 up to an additive term εout. Let R̃ be the estimate.
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3. Output αÑR̃ as an estimate of R.

We can bound the overall error as follows. Let εL be the inaccuracy, in `2 norm, in

solving the system of linear equations in step (2), i.e. εL = ‖| ˜̃u〉 − |ũ〉‖. This

encompasses any error in producing the initial state | f̃ 〉, as well as inaccuracy

arising from the QLE algorithm itself (although recall that we have in fact assumed

that we can produce | f̃ 〉 perfectly). Then

R̃ = 〈r| ˜̃u〉+εout

= 〈r|ũ〉+〈r|(| ˜̃u〉− |ũ〉)+εout

= 〈r|ũ〉+ε′L +εout (5.51)

for some ε′L, where |ε′L| ≤ εL by Cauchy-Schwarz. So

R̃ =
∑

i ũi〈φi, r〉
‖ũ‖(∑

i〈φi, r〉2
)1/2 +ε′L +εout = 〈ũ, r〉

α‖ũ‖ +ε′L +εout (5.52)

using the definition of |r〉 from (5.48) and of |ũ〉 as a normalised version of ũ. Writing

Ñ = ‖ũ‖+εN , we have

αÑR̃ = 〈ũ, r〉
(
1+ εN

‖ũ‖
)
+α(‖ũ‖+εN )(ε′L +εout). (5.53)

The analysis of the remaining term 〈ũ, r〉 is now similar to the classical setting:

〈ũ, r〉 = 〈u, r〉+〈ũ−u, r〉 = 〈u, r〉+ε′D , (5.54)

where

|ε′D | ≤ ‖r‖‖ũ−u‖ =: ‖r‖εD (5.55)

by Cauchy-Schwarz. Combining all the terms together, we have

αÑR̃−R = ε′D
(
1+ εN

‖ũ‖
)
+ 〈u, r〉εN

‖ũ‖ +α(‖ũ‖+εN )(ε′L +εout). (5.56)

We finally use 〈u, r〉 ≤ ‖u‖‖r‖ to obtain

αÑR̃−R = ε′D
(
1+ εN

‖ũ‖
)
+ ‖u‖‖r‖ε′N

‖ũ‖ +α(‖ũ‖+εN )(ε′L +εout) (5.57)

for some ε′N such that |ε′N | ≤ |εN |. To achieve overall accuracy ε‖r‖ it is sufficient for

each term in this expression to be upper-bounded by ε‖r‖/3, which follows from

εD =O(ε), (5.58)

εN =O(min{‖ũ‖,ε‖ũ‖/‖u‖}), (5.59)

εL,εout =O(ε‖r‖/(α‖ũ‖)). (5.60)
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Assume for simplicity in the final bound that ε ≤ ‖u‖; then the second condition

becomes εN = O(ε‖ũ‖/‖u‖). We now calculate the complexity of achieving these

accuracies.

Using the discretisation error bound in Eq. 5.20, we have εD ≤ C hk+1|u|k+1 for

some universal constant C. We can therefore take

h =O

((
ε

|u|k+1

) 1
k+1

)
. (5.61)

As in the classical case, this choice of h corresponds to solving a system of

N =O

(( |u|k+1

ε

) d
k+1

)
(5.62)

linear equations. For any δ > 0, as discussed in § 5.6 and Appendix C.1, ‖ũ‖ can be

approximated up to accuracy δ‖ũ‖ in time O((sκ2/δ)polylog(Nsκ/δ)) using the HHL

algorithm, recalling that s and κ are the sparsity and condition number of M,

respectively. Inserting δ= ε/‖u‖ and the bound on N, this part requires time

O
(

sκ2‖u‖
ε

poly(log(sκ‖u‖|u|k+1/ε))
)

(5.63)

We can also put an upper bound on εL and εout by upper-bounding α/‖r‖ and ‖ũ‖. In

the former case, it holds that
α

‖r‖ =O(h
p

s); (5.64)

we prove this technical claim in Appendix C.2. In the latter case,

‖ũ‖ =O(‖ũ‖M /h)=O(‖ũ‖E/h)=O(‖u‖1/h). (5.65)

The first two equalities follow from λmin(M) = Ω(N−2/d) = Ω(h2) [13, 34] and the

equivalence between ‖ũ‖M and ‖ũ‖E (see Eq. 5.24). The third follows from

‖ũ‖E = O(‖ũ‖1), where ‖ · ‖1 is the Sobolev 1-norm, which is a consequence of the

inner product a(·, ·) defining the energy norm corresponding to an underlying elliptic

PDE [34], and the bound in Eq. 5.20. Combining these bounds, the requirement on

εL and εout can be rewritten as

εL,εout =O
(

εp
s‖u‖1

)
. (5.66)

To achieve accuracy εout using the Hadamard test and amplitude estimation

requires O(1/εout) uses of the QLE algorithm, each of which runs in time

O(sκpoly(log(Nsκ/εL))) by Theorem 31. Inserting the bounds on εL, εout gives a

complexity for part (2) which is

O
(p

sκ‖u‖1

ε
poly(log(sκ‖u‖1|u|k+1/ε))

)
(5.67)
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Combining these bounds, we obtain an overall runtime of

O
(

sκ2‖u‖+p
sκ‖u‖1

ε
poly(log(sκ‖u‖1|u|k+1/ε))

)
. (5.68)

In fixed spatial dimension, s =O(1), and if preconditioning is not used, κ=O(N2/d)=
O((|u|k+1/ε)2/(k+1)). Inserting these values, we obtain a bound of

Õ

‖u‖|u|
4

k+1
k+1

ε
k+5
k+1

+
‖u‖1|u|

2
k+1
k+1

ε
k+3
k+1

 , (5.69)

where the Õ notation hides polylogarithmic factors. On the other hand, if we assume

that optimal preconditioning has been applied, so κ reduces to O(1), we would obtain

an overall bound of just

Õ
(‖u‖1

ε

)
. (5.70)

These runtimes should be compared with the corresponding runtimes of the

classical algorithm, in the cases of no preconditioning and optimal preconditioning,

respectively:

Õ

(( |u|k+1

ε

) d+1
k+1

)
and Õ

(( |u|k+1

ε

) d
k+1

)
. (5.71)

5.7 Comparing quantum and classical algorithms for
the FEM

Examples of the bounds we have derived are listed in Table 5.1, which includes the

effect of preconditioning on the runtime of the algorithms (see § 5.3 for the definition

of preconditioning). Note that in general it is difficult to rigorously analyse the

performance of preconditioners. We therefore choose to highlight two extreme

possibilities: no preconditioning at all is applied, or maximally successful

preconditioning is used. The true performance of an algorithm using

preconditioning will fall somewhere between the two cases.

First, note that if preconditioning is used, the dependence on the smoothness of

the solution in the quantum algorithm’s runtime is significantly milder than for the

classical algorithm, being only polylogarithmic. The runtime of both the classical

and quantum algorithms depends on the Sobolev `-seminorm and Sobolev `-norm of

the solution to the BVP, for some `; which as we have seen, measure the size of the

`th derivatives of the solution. Assuming that preconditioning has been optimally

used within the QLE algorithm, the quantum algorithm’s runtime is dependent only

on the Sobolev 1-norm (up to polylogarithmic terms). However, the classical

algorithm’s runtime depends on the Sobolev `-seminorm, for some ` ≥ 2. Therefore,
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Algorithm No preconditioning Optimal preconditioning

Classical Õ
(
(|u|2/ε)(d+1)/2)

Õ
(
(|u|2/ε)d/2)

Quantum Õ
(‖u‖|u|22/ε3 +‖u‖1|u|2/ε2)

Õ (‖u‖1/ε)

Table 5.1: Complexity comparison of the algorithms studied in this chapter.
Quantities listed are the worst-case time complexities of approximating a linear
functional of the solution to a d-dimensional BVP up to accuracy ε, using the
FEM with linear basis functions (see § 5.6 for bounds when using higher-degree
polynomials). ‖u‖, |u|` and ‖u‖` are the L2 norm, Sobolev `-seminorm and
Sobolev `-norm of the solution respectively, defined in § 5.3. The Õ notation hides
polylogarithmic factors.

for problems with solutions whose higher-order derivatives are large, the quantum

advantage could be substantial. Even if preconditioning is not used, for large

enough d the dependence is polynomially better.

Perhaps more importantly, observe that in the term dependent on ε in the

algorithms’ runtimes, the quantum algorithm’s runtime no longer depends on the

dimension d. This holds whether or not preconditioning is used. Thus the quantum

algorithm will achieve a large speedup when ε is small and d is large. (Note that we

cannot quite call this an exponential quantum speedup with respect to d: the

runtime of the quantum algorithm also depends on a term C in Eq. 5.20 which is

constant for a fixed dimension and family of meshes, but has unbounded dependence

on d.) One example application where this is the case is any dynamical problem

involving n bodies, which implies solving a PDE defined over a configuration space

of dimension 2n. In this case the quantum algorithm has a polynomial advantage,

with the exponent equal to the number of bodies. Also, there may be a significant

advantage for problems in mathematical finance; for example, pricing multi-asset

options requires solving the Black-Scholes equation over a domain with dimension

given by the number of assets [122]. Here, the quantum advantage is proportional

to the number of assets in the option. This is discussed further in § 5.9.

As a demonstrative example of the speedup (or otherwise) expected for the

quantum algorithm in fixed dimensions, consider the case of solving a BVP in four

dimensions (three spatial and one temporal, say), using piecewise linear basis

functions. Then, the classical runtimes both without preconditioning and with

optimal preconditioning are

Õ

(( |u|2
ε

) 5
2
)

and Õ
(( |u|2

ε

)2)
, (5.72)

127



CHAPTER 5. QUANTUM ALGORITHMS FOR THE FINITE ELEMENT METHOD

respectively. The analogous quantum runtimes are

Õ

(‖u‖|u|22
ε3 + ‖u‖1|u|2

ε2

)
and Õ

(‖u‖1

ε

)
. (5.73)

In this case, lack of preconditioning leads to a quantum algorithm which might or

might not outperform the classical algorithm, depending on the relative sizes of ε,

‖u‖, ‖u‖1 and |u|2. In the optimally preconditioned case, the quantum algorithm

both scales better with accuracy and has a less stringent condition on the solution

smoothness.

The results we have derived can be summarised as follows: we find that the QLE

algorithm is indeed applicable to the general FEM, and can achieve substantial

speedups over the classical algorithm. However, the quantum speedup obtained is

only at most polynomial, if the spatial dimension is fixed and the solution satisfies

certain smoothness properties. For example, the maximal advantage of the quantum

algorithm for the typical physically relevant PDE defined over 3+1 dimensions

(three spatial and one temporal, such that d = 4) is approximately quadratic. In

small enough dimension, and if the solution is sufficiently smooth, the runtime of

the quantum algorithm can actually be worse than the classical algorithm.

We also remind the reader that there is a subtle point here regarding the output

of the quantum algorithm: the scaling with accuracy of the quantum algorithm is

substantially better if we only wish to produce the quantum state corresponding to

the solution to the FEM [52], rather than computing some property of the state by

measuring it. However, in applications one will always eventually want to perform a

measurement to extract information from the final output of the quantum algorithm.

We therefore have considered it reasonable to compare the quantum and classical

complexities of producing a (classical) answer to some given problem.

Our results pinpoint the regimes in which one can hope to achieve exponential

quantum speedups for the FEM, and show that apparent speedups can disappear

when one takes the effect of solution accuracy into account. Nevertheless, we believe

that the fact that exponential speedups might still be obtained in some cases is

encouraging, and an incentive to focus on problems with a possibility of a genuine

exponential quantum speedup.

5.8 Quantum lower bounds

Finally, we will argue that the inability of the quantum algorithm to deliver

exponential speedups (in some cases) is not a limitation of the algorithm itself, but

rather that any quantum algorithm for the FEM will face similar constraints. We

elucidate several barriers with which any quantum algorithm will have to contend.
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First, we show that, informally, any algorithm which needs to distinguish between

two states which are distance ε apart must have runtime Ω(1/
p
ε). Second, we argue

that the “FEM solving subroutine” of any quantum algorithm can likely be replaced

with an equivalent classical subroutine with at most a polynomial slowdown (in

fixed spatial dimension and when the solution is smooth). Third, we show that there

can be no more than a quadratic speedup if the input to the problem is arbitrary and

accessed via queries to a black box or “oracle”.

5.8.1 A general quantum lower bound

We observe from Theorem 31 and the discussion in § 5.6.3 that producing the

quantum state |x〉 ∝ A−1|b〉 for some well-conditioned, sparse matrix A can be

achieved in time polylog(1/ε), while the apparently simpler task of approximating

some natural properties of |x〉 uses time O(1/ε). It is therefore natural to suspect

that the runtime of this component could be improved substantially, e.g. to

polylog(1/ε). However, it was shown by Harrow, Hassidim and Lloyd [104] that the

existence of a quantum algorithm with this scaling for approximating some very

simple properties of |x〉 would imply the complexity-theoretic consequence BQP=PP,

which is considered highly unlikely (implying, for example, that quantum computers

could efficiently solve NP-complete problems).

As well as this complexity-theoretic argument, we now give an argument based on

ideas from query complexity which lower bounds the runtime of any algorithm which

approximates some function of the output of the QLE algorithm, without making use

of the internal structure of the algorithm. This encompasses all the uses of QLE for

the FEM discussed in § 5.6.3.

We adapt a standard technique of Bennett et al. [17]. Consider an algorithm

which has access to a unitary subroutine Aψ, parametrised by an unknown state

|ψ〉, such that Aψ maps |0〉 to |ψ〉. The algorithm may also have access to the inverse

subroutine A−1
ψ . The algorithm does not know anything about how Aψ is

implemented and uses it as a “black box”. It aims to estimate some property of |ψ〉.
In the context of the FEM, we think of Aψ as the QLE algorithm, where |ψ〉 is the

output state corresponding to the approximate solution of the desired BVP. We

assume that the algorithm only makes use of the QLE subroutine for one instance,

i.e. it uses Aψ throughout, rather than Aψ′ for some |ψ′〉 6= |ψ〉; relaxing this

assumption would only make the problem harder.

For notational simplicity, we also assume in the proof that the overall algorithm

does not use A−1
ψ and does not use any ancilla qubits. (These assumptions can easily

be relaxed without changing the conclusions.) Further assume that the overall

algorithm makes T uses of Aψ, interspersed with arbitrary unitary operators
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U1, . . . ,UT+1. Let |φ〉 be such that ‖|ψ〉 − |φ〉‖ ≤ ε, and such that the output of the

algorithm should be different when using Aφ rather than Aψ. Finally let |η〉ψ,t be

the state of the overall algorithm after t uses of Aψ. Then

‖|η〉ψ,T −|η〉φ,T‖ = ‖UT+1AψUT . . .AψU1|0〉−UT+1AφUT . . .AφU1|0〉‖
= ‖AψUT . . .AψU1|0〉−AφUT . . .AφU1|0〉‖
≤ ‖AψUTAψUT−1Aψ . . .AψU1|0〉−AψUTAφUT−1Aφ . . .AφU1|0〉‖
+‖AψUTAφUT−1Aφ . . .AφU1|0〉−AφUT . . .AφU1|0〉‖
≤ ‖AψUT−1Aψ . . .AψU1|0〉−AφUT−1Aφ . . .AφU1|0〉‖+‖Aψ−Aφ‖.

(5.74)

The first inequality is the triangle inequality, while the second uses the fact that

unitaries do not change the Euclidean distance. As the algorithm does not use any

information about the internal structure of Aψ, Aφ, we are free to assume that Aψ =
|ψ〉〈0| + |φ′〉〈1| +∑

i≥2 |ζi〉〈i|, Aφ = |φ〉〈0| + |ψ′〉〈1| +∑
i≥2 |ζi〉〈i|. Here |φ′〉 and |ψ′〉 are

states orthonormal to |ψ〉 and |φ〉, respectively, within the subspace spanned by |ψ〉
and |φ〉, and |ζi〉 are arbitrary states which are orthonormal to both of these states

and each other. Explicitly, we can take

|φ′〉 = |φ〉−〈ψ|φ〉|ψ〉√
1−|〈ψ|φ〉|2

, |ψ′〉 = |ψ〉−〈φ|ψ〉|φ〉√
1−|〈ψ|φ〉|2

. (5.75)

Then

‖Aψ−Aφ‖ = ‖(|ψ〉− |φ〉)〈0|+ (|φ′〉− |ψ′〉)〈1|‖. (5.76)

Writing |δ〉 := |ψ〉−|φ〉, |δ′〉 := |φ′〉−|ψ′〉 and upper-bounding the operator norm by the

Frobenius norm, we have

‖Aψ−Aφ‖ ≤
√

tr(A†
ψ−A†

φ)(Aψ−Aφ)

=
√

〈δ|δ〉+〈δ′|δ′〉
=
p

2‖|ψ〉− |φ〉‖, (5.77)

where we use the fact (which can easily be seen by direct calculation) that ‖|φ′〉 −
|ψ′〉‖ = ‖|ψ〉− |φ〉‖. Hence

‖Aψ−Aφ‖ ≤
p

2ε (5.78)

and in turn, by induction,

‖|η〉ψ,T −|η〉φ,T‖ ≤ T
p

2ε. (5.79)

As the algorithm is supposed to output something different if it is given Aφ rather

than Aψ, assuming that it succeeds, the final measurement made distinguishes
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between the two states |η〉ψ,T and |η〉φ,T . The optimal worst-case probability p of

distinguishing these states is given by the trace distance between them [112], so

p = 1
2
+ 1

4
‖ηψ,T −ηφ,T‖1 ≤ 1

2
+ 1

2
‖|η〉ψ,T −|η〉φ,T‖ ≤

1
2
+ Tεp

2
. (5.80)

Therefore, in order for the algorithm to succeed with probability (say) 2/3, it must

use Aψ at least Ω(1/ε) times. As a simple example of how this bound can be applied,

consider an algorithm which attempts to distinguish between these two cases: a)

the output from the QLE subroutine is a particular state |ψ0〉; b) the output from

the QLE subroutine is some state |φ〉 such that the overlap |〈φ|ψ0〉|2 = 1− ε. Then

‖|φ〉 − |ψ0〉‖ = O(
p
ε), so any algorithm distinguishing between these two cases by

using QLE as a black box must use it Ω(1/
p
ε) times.

This bound is tight for this particular problem, which can be solved by using the

QLE subroutine O(1/
p
ε) times within quantum amplitude estimation [31]. However,

for other problems it may be possible to put stronger lower bounds on the complexity.

5.8.2 Replacing the QLE subroutine with a classical algorithm

The above lower bound shows, roughly speaking, that any algorithm which uses the

QLE subroutine as a black box and attempts to determine up to accuracy ε some

property of the output state must make Ω(1/
p
ε) uses of the subroutine. However, in

some cases it can be of interest to approximate properties of the output state to quite

low levels of accuracy.

For example, consider the problem of distinguishing between the following two

cases: a) the solution to a BVP is periodic; b) the solution is far from periodic. As

it is known that quantum algorithms can test periodicity of functions exponentially

faster than classical algorithms can [45], one might hope to use QLE, together with

the quantum periodicity tester, to solve this problem exponentially faster than any

classical algorithm.

Also note that it is likely to be hard to prove that it is impossible to obtain a

superpolynomial quantum speedup for solving BVPs, if we define “solving” a BVP

as computing an arbitrary function of the solution to a BVP. For example, we could

contrive a BVP where the solution is easy to write down, and can be interpreted as an

integer; and could then ask the algorithm to output the prime factors of that integer.

Proving that quantum computers could not outperform classical computers for this

task would imply an efficient classical algorithm for integer factorisation.

Nevertheless we believe that, even given a quantum algorithm for solving

problems of this form, any uses of the QLE algorithm as a subroutine could be

replaced with a classical algorithm, with at most a polynomial slowdown if the

spatial dimension is fixed and the solution is suitably smooth. This would imply
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that any exponential quantum speedup in the overall algorithm is not due to the

part of it that solves the FEM. Making this argument rigorous seems challenging for

technical reasons related to regularity of meshes and comparing different norms to

measure accuracy, so we do not attempt it here, instead merely sketching the ideas

informally.

The argument proceeds as follows. Imagine we have an overall quantum

algorithm which uses the QLE algorithm as a subroutine to solve T FEM instances

in spatial dimension bounded by d = O(1), such that the solution to each instance

has all relevant Sobolev norms bounded by O(1). Then each such instance can be

approximately solved by a classical algorithm using a mesh of size poly(1/ε), for any

desired accuracy ε. We replace each subroutine which applies the QLE algorithm to

solve an instance of the FEM, using a mesh M to achieve accuracy ε, with the

following procedure:

1. Classically solve the same FEM instance, using a mesh M′ which achieves

accuracy max{γ/T,ε} for some universal constant γ. Note that if ε < γ/T this

will in general be a coarser mesh than M.

2. Construct the quantum state corresponding to the output of the solver, as a

superposition of basis functions from M′.

3. Map this quantum state to the equivalent quantum state on the finer mesh M.

This is essentially equivalent to the classical task of expressing each element

of M′ in terms of elements of M.

Here we are assuming that the meshes M and M′ are sufficiently regular that the

last step makes sense (in particular, that M is a submesh of M′).
If ε ≥ γ/T, the state produced by the original subroutine is left essentially

unchanged. If ε< γ/T, the original state produced was within distance O(1/T) of the

actual solution to the corresponding FEM instance, as is the state produced by the

new subroutine. By the triangle inequality, the new state must be within distance

O(1/T) of the old state. If each such state produced by one of the new subroutines is

within Euclidean distance O(1/T) of the corresponding original state produced by

one of the QLE subroutines, then using a similar argument to § 5.8.1, the whole

algorithm does not notice the difference between the original and modified sequence

of subroutines except with low probability.

We now examine the complexity of the steps in the modified subroutines. Each

use of step 1 solves the FEM with precision O(1/T), which requires time poly(T) and

a mesh of size poly(T). In step 2 we need to construct a known poly(T)-dimensional

quantum state. This can be done in time poly(T) for any such state (see e.g. [186,

Claim 2.1.1]). If M and M′ are suitably regular, the mapping required for step 3 can
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be implemented efficiently, i.e. in time polynomial in n, the number of qubits used by

the original algorithm.

As the original quantum algorithm solved T instances of the FEM, and acts

nontrivially on all n qubits, its runtime must be lower-bounded by max{T,n}.

Therefore, the runtime of the new algorithm is at most polynomial in the runtime of

the old algorithm. As the new algorithm no longer contains any quantum

subroutines which solve the FEM, we see that any quantum speedup achieved by it

does not come from quantum acceleration of the FEM.

5.8.3 Solving oracular FEM instances

We finally observe that there cannot be an efficient quantum (or classical) algorithm

for solving an instance of the FEM if the input function f (x) is initially unknown and

provided via an oracle (“black box”), and does not satisfy some smoothness properties.

Indeed, this even holds for near-trivial FEM instances.

Imagine we are given an FEM instance of the form u(x) = f (x), for f ∈ L2[0,1],

and are asked to approximate the quantity
∫ 1

2
0 u(x)2dx to within accuracy ε – this is

a very simple property of a trivial PDE. Further assume that we are given access to

f via an oracle which maps x 7→ f (x) for x ∈ [0,1], and that there are N possibilities

for what the function f can be. We will show that this problem is hard by encoding

unstructured search on N elements as an instance of the FEM.

Let B be the “bump” function defined by B(x) = exp(−1/(1− x2)) for −1 < x < 1,

and B(x) = 0 elsewhere. Fix N and let f0 be the shifted and rescaled bump function

f0(x)=p
NB(2Nx−1). f0 is supported only on [0,1/N], has continuous derivatives of

all orders, and ‖ f0‖ =Θ(1).

Assume we have access to an oracle function O : {0, . . . , N −1} → {0,1} such that

there is a unique y0 ∈ {0, . . . , N − 1} with O(y0) = 1. It is known that determining

whether y0 < N/2 or y0 ≥ N/2 requires Ω(
p

N) quantum queries to O [97]. We define

f in terms of O as follows. Given x ∈ [0,1], set y = bNxc and evaluate O(y). If the

answer is 1, return f0(x− y/N). Otherwise, return 0.

f (equivalently, u) is a bump function on the range [y0/N, (y0 +1)/N], and is zero

elsewhere. So, if y0 < N/2,
∫ 1

2
0 u(x)2dx ≥ C for some constant C > 0, while if y0 ≥ N/2,∫ 1

2
0 u(x)2dx = 0. Hence approximating this integral up to additive accuracy ε, for

sufficiently small constant ε> 0, allows us to determine whether or not y0 < N/2. As

this task requires Ω(
p

N) quantum queries, solving this instance of the FEM must

require Ω(
p

N) queries to f . A similar classical lower bound of Ω(N) queries also

holds. Note that this does not contradict the bound in Eq. 5.20 as the norms of

derivatives of u are large.
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5.9 Outlook

We have shown that when one compares quantum and classical algorithms for the

FEM fairly by considering every aspect of the problem (including the complexity of

producing an accurate approximation of the desired classical output), an apparent

exponential quantum advantage can sometimes disappear. However, there are still

two types of problem where quantum algorithms for the FEM could achieve a

significant advantage over classical algorithms: those where the solution has large

higher-order derivatives, and those where the spatial dimension is large.

For ease of comparison with the quantum algorithm, we have only considered a

very simple classical FEM algorithm here; there is a large body of work concerned

with improving the complexity of such algorithms. For example, the finite element

mesh can be developed adaptively and refined near parts of the domain which are

more complex or of particular interest. This can substantially improve the

convergence speed. It is our suspicion that more advanced classical FEM algorithms

might eliminate the quantum algorithm’s advantage with respect to BVPs whose

solutions have large higher-order derivatives. For example, adaptive schemes such

as “hp-FEM” have, in principle, a discretisation error that scales far better than the

scaling shown here; it can be shown [99] that a perfect adaptive scheme has scaling

‖u− ũ‖ =O(e−
1/h), (5.81)

provided that the dimension of the domain is both small and fixed. While this is

a large improvement over the “vanilla” classical complexity presented above, it is

not always apparent how to generate adaptive schemes that are effective enough to

saturate this scaling, in practice. Also, it does not seem impossible that the quantum

algorithm could be substantially improved using similar adaptive schemes.

Additionally, the possibility of substantial improvement in the classical

algorithm is less clear with respect to problems in high spatial dimension d. Indeed,

any reasonable discretisation procedure seems likely to lead to systems of linear

equations which are of size exponential in d (the so-called “curse of dimensionality”).

This is precisely the regime in which the quantum algorithm might be expected to

have a significant advantage. One setting in which such high-dimensional BVPs

occur is mathematical finance; for example, the problem of pricing multi-asset

basket options using the Black-Scholes equation [122]. Alternatively, producing a

solution to any problem in many-body dynamics requires solving a PDE where the

dimension grows with the number of bodies. However, Monte Carlo methods can

sometimes be used to alleviate the curse of dimensionality in practice [29, 136]. It is

thus a compelling open question whether quantum algorithms can yield an

exponential speedup for problems of practical interest in this setting.
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C H A P T E R 6

SIMULTANEOUS TESTING OF QUANTUM

MECHANICS AND GENERAL RELATIVITY

WITH A QUANTUM OPTICAL SATELLITE

In this chapter we deal with a tangential notion of validation of quantum systems:

we propose an experiment designed to validate that a specific general relativistic

system also behaves quantum mechanically, via the observation of a

general-relativistic effect on single photon interference. The experiment consists of a

folded Mach-Zehnder interferometer, with the arms distributed between a single

Earth orbiter and a ground station. By compensating for other degrees of freedom

and the motion of the orbiter, this setup aims to detect the influence of general

relativistic time dilation on a spatially superposed single photon. The chapter

details a payload to measure the required effect, along with an extensive feasibility

analysis given current technological capabilities.

6.1 Introduction

Since the beginning of the 20th century, quantum mechanics and general relativity

have been the theoretical foundations of modern physics. However, while their

predictive power has enabled us to understand the universe at both very small and

very large scales, their validity has only been explored separately. Regarding

general relativity, historic tests include measuring the perihelion of Mercury [62]

and the Pound-Rebka experiment to quantify gravitational redshift [184]. Even with

the precision attainable with contemporary experiments, general relativity remains

robust; for example, estimates of the Shapiro delay (the slowing of light as it passes

by a massive body) have been accurately measured via radio links with the Cassini

spacecraft [22]. Additionally, tests of the (weak) equivalence principle now concur

with general relativity with accuracy 10−13 [231], and will be bounded by 10−15 with
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the space-based MICROSCOPE experiment [74]. This resilience to experimental

analysis is also shared by quantum mechanics. The most stringent tests of quantum

theory are precision tests of quantum electrodynamics (QED); these have now been

verified to an accuracy of 10−12 using a one-electron quantum cyclotron [172].

While quantum field theory, which is currently the best description we have of

the quantum world, is fundamentally incompatible with general relativity,

descriptions of quantum field theories on static but curved background spacetimes

are internally consistent and produce novel predictions [23] (such as Hawking

radiation [107]). However, any full description of gravity itself as a quantum field

theory is bound to fail due to a lack of renormalisability. Additionally, quantum field

theory and general relativity have contrasting descriptions of physical parameters,

the most notable of which is the nature of time; this “problem of time” is an

unresolved hurdle in producing a canonically quantised theory of gravity [119].

Without exception, all of the experiments mentioned above are tests of either

general relativity or quantum mechanics, but not the interplay of both. As such, their

outcomes are consistent with classical dynamics evolving on a curved background (in

the former case), or of a quantum field theory evolving in flat space (in the latter

case). A controlled experiment exploring quantum dynamics on a curved background

is, to the author’s knowledge, yet to be performed. To this end, a theoretical proposal

by Zych et al. [237] outlined the premise of a controllable experiment on a system

that is both highly quantum, and occurring on a non-trivial background spacetime.

Such an experiment would provide vital evidence to aid the successful unification of

quantum mechanics and general relativity.

The crux of the proposal in [237] is to perform interferometry of single quanta,

but to orient the interferometer in such a way that quantum states in each arm

traverse a different gravitational equipotential. Historically, such an idea is not

new; the analysis of gravitational effects on matter interferometry was first explored

by Collela, Overhauser and Werner (“COW”) in 1975 [66]. While the COW

experiment did observe a gravitational influence on the output of the interferometer,

their data is adequately described by analysing a Mach-Zehnder interferometer

placed in a Newtonian gravitational field, rather than a truly relativistic spacetime.

The key physical extension of the COW experiment present in [237] is to construct

an interferometer large enough that general relativistic effects become apparent in

the output of the interferometer, and to let the position of the photon in the

interferometer serve as the local clock. Similar proposals exploring gravitational

effects on quantum optical systems consider interferometry with a precessing

polarisation serving as the clock [36], or explore the degradation of entanglement

due to gravity [37].
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The objective of this chapter is to present a full design of a space-based quantum

optics experiment capable of carrying out the experiment proposed by Zych et al.

[237], along with a discussion of the practical feasibility of such an experiment. The

design consists of a “folded” Mach-Zehnder interferometer distributed between an

orbiting satellite (containing a single photon source, a spool of single-mode optical

fibre, and a transmitting telescope) and a ground-station (equipped with a receiving

telescope, an identical spool of fibre and a bank of single photon detectors). A

stripped-down schematic of the proposed design is shown in Figure 6.1. Moreover,

we contend that overcoming the engineering requirements for this proposal would

be of significant benefit to those interested in developing quantum communications

networks on a global scale.

The chapter breakdown is as follows: in § 6.2, we give a scientific background,

and extend the analysis present in [237] to derive the predicted interferometric signal

given that the satellite is in motion. In § 6.3, we give an extensive feasibility analysis

of the experiment. This includes a proposed setup and operational parameters for

key optical components in § 6.3.1, followed by analysis of interferometric stability,

systematic error, loss and noise in § 6.3.2, § 6.3.3, § 6.3.4 and § 6.3.5, respectively. All

of these elements are combined with a statistical analysis in § 6.4, in order to derive

the operational duration necessary to test the hypotheses in [237] to a prespecified

confidence. Finally, we outline orbit and mission requirements in § 6.5 and highlight

operational risks to be mitigated in § 6.6.

6.2 Scientific background

While the experiment proposed by Zych et al. in [237] calculates the general

relativistic effect on the fringe visibility of the interferometer output signal, we must

also introduce special relativistic corrections due to the orbital velocity of the

satellite (§ 6.2.1). This full expression for the time dilation is then used to derive an

expected output for the Mach-Zehnder interferometer in a regime where relativistic

corrections are important (§ 6.2.2).

6.2.1 Relativistic time dilation

General relativity predicts that a clock in a lower gravitational potential ticks slower

than a clock in a higher one. This means that two clocks initially synchronised and

then moved to points of differing gravitational potential accumulate an increasing

time delay. This gravitational time dilation is observed daily in global navigation

satellite systems, where one also has to account for special relativistic time dilation

due to the motion of the positioning satellites. The total time delay can be derived
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Figure 6.1: A simplified schematic of the proposed experiment. Colour here does
not represent frequency; red and blue denote orthogonal polarisation states. The red
and blue paths are only distinguished by their travel times around the loops on the
satellite and on the ground, respectively.

directly in a general relativistic framework starting from the spacetime metric, using

the weak field approximation for the Earth’s gravitational potential and assuming

the speed of a satellite to be much smaller than the speed of light. It is important

to note that the time dilation is independent of the physical realisation of the clock.

For example, we could consider an optical fibre loop and use the position of a photon

travelling in the fibre as a clock. If two of these fibre-clocks were placed at different

heights in the Earth’s gravitational field, the one at the lower position would tick

slower, meaning that the photon would take more time to travel the entire length of

the fibre. Such a time delay is known as the Shapiro delay.

Considering the simplified experimental setup described in Figure 6.1, we deduce

that the time spent by a photon in the satellite loop differs from the time spent in

the ground loop, as measured by an observer on the ground. The accumulated time

delay, i.e. the difference in photon arrival times, can be obtained by generalising the

calculation described in [237] (see Appendix D.1). For a satellite on an elliptical orbit

around the Earth, the time delay is given by

∆τ= nl
c3

[
−W0 +GM

(
2

R⊕+h
− 1

2a

)]
− ndl

c
, (6.1)

138



6.2. SCIENTIFIC BACKGROUND

Figure 6.2: The total time delay between the fibre clocks, as a function of height, for a
fixed fibre length and fibre refractive index. Magenta lines mark lowest and highest
altitudes at which measurements could be performed (see feasibility analysis). In this
region the time delay is dominated by the Shapiro delay. The choice of fibre length
and refractive index is discussed in § 6.3. The altitudes and orbital parameters are
discussed in § 6.5.

where l is the proper length of the satellite fibre, l + dl is the proper length of the

ground fibre, n is the fibre’s refractive index, G is the gravitational constant, M is

the mass of the Earth (5.97219 ×1024 kg), R⊕ is the radius of the Earth (6378100 m),

the geoidal potential W0 = LG c2 where LG = 6.969290134×10−10 by definition, c is

the speed of light in vacuum, h is the altitude of the satellite with respect to the

Earth’s surface and a is the semi-major axis of the orbit. In order to compute the

gravitational potential experienced by the satellite, we assume the Earth is a perfect

sphere. We can safely neglect the corrections due to the irregular shape of the

Earth, both on the gravitational potential and on the satellite’s orbit, since they are

orders of magnitude smaller than the first order approximation [130]. A plot of this

expression, in the case dl = 0, is shown in Figure 6.2. Note that the general

relativistic and special relativistic time dilations act in opposition, such that at low

satellite altitudes the time delay is positive and dominated by the special relativistic

dilation, whereas at high altitudes it is negative and dominated by the general

relativistic dilation. Therefore care must be taken to launch the satellite into a

sufficiently high orbit for the general relativistic time dilation to be the dominant

effect. Figure 6.2 demonstrates that the Shapiro delay for a satellite at the orbital

heights considered in this proposal is of the order 100 fs.
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Figure 6.3: The expected interferometer signal vs. physical path length difference of
the two interferometer arms, with the parameters as described in the text, at three
different heights of the satellite. The signal was calculated by numerically evaluating
Eq. (6.2) with a frequency-dependent refractive index as described in [150].

6.2.2 Interferometry in the presence of gravity

Given this modification to the expected time dilation, we provide a brief exposition

on the theory presented in [237], in order to motivate the design of our experiment.

The reader is referred to [237, §2, §3] for a more thorough treatment.

The output of a Mach-Zehnder interferometer is sensitive only to a difference in

the relative optical path length of each arm [144]. If the interferometer were to have

two ideally-controlled arms of equal proper length (i.e. dl = 0), the relative optical

path would be dependent only on the Shapiro delay ∆τ. However, by introducing a

controlled difference in the relative length of the two interferometer arms by actively

controlling the length of the fibre spools, one could cancel out ∆τ and recover maximal

contrast at the output of the interferometer for any height of the satellite. Measuring

the path-length difference that gives maximum contrast at different gravitational

potentials would constitute a measurement of the Shapiro delay between the parts of

the photon state traversing the upper and lower arms of the interferometer. It can be

shown (see Appendix D.2) that the probability of the photon being detected at the ±
outputs of the Mach-Zehnder interferometer (with a single photon input) is given by:

P± = 1
2

(
1±

∫
dν| f (ν)|2cos(ν∆τ)

)
, (6.2)

where ν is angular frequency in rads−1 defined in the reference frame of the observer

at distance r from the Earth, ∆τ is the time delay as given in Eq. 6.1, P± is the
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probability of the photon being detected at the ± output, and f (ν) is the spectrum of

the light source, normalised such that
∫ ∞
−∞ | f (ν)|2dν= 1.

In Figure 6.3 we numerically evaluate Eq. 6.2 with a range of different fibre

lengths for three different satellite heights. We assume a Gaussian spectral density

for the light with f (ν) = (
σ
π

)1/4 exp(−σ
2 (ν− ν0)2), with parameters taken from the

setup in § 6.3: a central frequency ν0 = 2π× c/1550 nm and width σ = (100 fs/2π)2.

We take the satellite fibre to be 60 km long, while the length of the ground station

fibre differs by the amount given on the x-axis of the figure. The

frequency-dependent speed of light in the fibres is calculated from the refractive

index for fused silica given in [150]. In this proposal, a satellite is sent on an elliptic

orbit and we record the physical path-length difference required to recover full

visibility, for varying satellite heights. From this, the corresponding Shapiro delay

as a function of satellite height can be inferred.

6.3 Implementation

In order to present a feasible implementation, it must be demonstrated that

enough data can be collected within the lifetime of the satellite to confirm, or refute,

the hypothesised signal to a prespecified confidence. In this particular proposal,

there are four key issues that must be addressed before feasibility can be

demonstrated: stability of the interferometer, loss from the source to the detectors,

noise from extraneous and atmospheric photons, and mitigation of any other degrees

of freedom besides the Shapiro delay that might introduce distinguishability (in

particular, photon dispersion). We first outline a feasible setup in § 6.3.1, before

presenting an analysis of these key issues.

6.3.1 Optical setup and components

A detailed illustration of the interferometer setup, with all the key optical

components, can be seen in Figure 6.4. The choice of operational parameters is

ultimately a compromise between what is feasible to implement and what is

necessary to recover the desired data. As such, there is no single optimal set of

components; relaxing the constraints on their performance may be acceptable if they

become more durable and the satellite can operate for longer and take more data,

for example (we aim to mitigate large pulse dispersion, noise and random

fluctuations in signal by integrating counts over long time periods; hence, durability

of components is critical). Therefore, the following choices of components and

parameters are not intended to be a fixed specification for the payload, but to
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Figure 6.4: Full schematic of the payload optical system. The setup is designed to
minimise the effects of other degrees of freedom besides the Shapiro delay that may
introduce distinguishability at the output of the interferometer.

demonstrate one setup that could feasibly produce meaningful results. We highlight

the following optical elements, whose operational parameters are crucial to the

success of the experiment.

Single photon source: An off-the-shelf, mode-locked, pulsed laser with

operational wavelength of 1550 nm and 1 GHz repetition rate is attenuated to a

mean photon number of 0.1 photons per pulse. While an attenuated laser is a

straightforward option, true, heralded single photon sources have been

space-qualified and operated on the QUESS satellite [88]. However, we are not

aware of a true, heralded source of single photons that meets the requirements of

repetition rate and pulse width presented here. The reason for this particular level

of attenuation is the trade-off between lowering multiphoton emission and

maintaining a high number of total counts - this attenuation reduces the probability

of multiphoton emission to 5% and results in a single photon rate of 100 MHz, which

matches the resolution of the single photon detectors. The chosen wavelength
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guarantees high atmospheric transmission and the utilisation of well-developed

telecommunication technology. The functional dependence of the fringe contrast on

the Shapiro delay ∆τ and the pulse width
p
σ (see [237], Eq. 13) demands the

utilisation of ultra-short (<1 ps) single photon pulses to measure a noticeable effect

(we note single photon sources with a width as short as 65 fs have been

demonstrated in [166]). We take
p
σ= 150fs.

Classical reference laser: A 1300 nm multi-purpose laser, operating in continuous

wave mode, is led alongside the single photons through the interferometer. Its

purpose is to provide reference data to estimate phase fluctuations and systematic

errors. For precise corrections, an operational wavelength as close as possible to the

single photon source is required, but overlap with the bandwidth of the single

photon pulses has to be avoided. The chosen wavelength is a reasonable

compromise. Frequency stability of both lasers is paramount; see § 6.3.2.

Additionally, a fraction of the incident laser power is separated at the ground station

and used for wavefront reconstruction and compensation of polarisation changes due

to satellite movement.

Fibres: We expect the delay fibres must be stabilised to relative length changes

of 10−10 for observing the predicted interference effects, which includes a thermal

stabilisation of ±10−5 K. Moreover, the fibre length must change dynamically to

recover full contrast of the interference fringes. Active length corrections are carried

out by a piezo fibre-stretcher. Fibres of length l = 60km and refractive index n = 1.5

(glass) are assumed.

Transmission telescope: The on board emitting telescope is used to focus the

beam from the two sources. The aperture needs to be large enough to emit a strong

signal but is limited by size and weight; a reasonable choice is a 60 cm aperture, 1 m

long, 6µrad field of view, Cassegrain reflector telescope. Material choices, such as

Beryllium mirrors, would also minimise weight.

Single photon detectors: Since the goal of the detectors is to receive single

photons that have travelled astronomical distances, it is extremely beneficial to

minimise dark counts and maximise efficiency. We consider single-nanowire single

photon detectors (SNSPDs), to benefit from the superior dark count over

conventional avalanche photodiodes. While these detectors aren’t as commonplace,

the technology has already been established in a similar setting in the LLCD

mission (NASA) [24].

Timing: Emission of the single photon pulses are tagged with timestamps by a

Rb-clock (chosen for its small size, weight and commercial availability).

Synchronisation with an identical clock on the ground will be used to exclude

background noise at the data post-processing stage and to track the path of the
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satellite. Precision timing is also necessary to modulate the action of time-gate

filters in front of the detectors.

6.3.2 Random fluctuation and stability

As the effect we wish to measure is a minute change in optical path length in the

interferometer due to the Shapiro delay, exposing the interferometer to other

sources of instability can swamp the desired signal. We find that optical path and

phase changes in the atmosphere due to temperature fluctuations are negligible

compared to fluctuations in the length of fibre; given the thermal properties of fused

silica we calculate necessary temperature stabilisation of the fibres of less than

10−5 K to ensure a relative path length stability of 10−10. Passive insulation and

active heat distribution can mitigate a large fraction of the thermal instability, but

both the satellite and the ground station include a feedback loop of a frequency

stabilised reference laser in combination with a piezo fibre stretcher, to allow for

fibre noise reduction. Also, some thermal fluctuation can be erased in

post-processing by referring to data from the reference laser.

In addition, continued operation of the experiment requires protection of the

reference laser from frequency fluctuations and drift. Given the magnitude of the

path length change, we estimate a necessary relative frequency stability of the

reference laser less than 10−11. Long term accuracy of the reference laser within

required precision is most feasible via frequency comb stabilisation [80]. This

method will increase further complications and costs, and could be circumvented by

improvements in the area of stabilisation by using atomic absorption lines, which

today are close to reaching comparable relative accuracies [121].

6.3.3 Systematic transmission errors and dispersion

We highlight three systematic errors present in the experiment, mitigation of which

are critical: dispersion, both in the fibre and the atmosphere; Doppler shift due to

the velocity of the satellite; and changes in optical path length due to the ellipticity

of the orbit. Dispersion is prevalent both in the optical fibre and in the atmosphere.

We estimate a requirement for fibre dispersion of <5 fs/km/nm, ensuring a

broadening of the pulse width in the fibres of <0.5% per km; this is a stringent

enough requirement to fix dispersion as the primary hurdle facing this experiment.

The current state-of-the-art for dispersion-limited fibre is a factor of ten worse than

this: 50 fs/km/nm [204]. Current technologies are capable of dispersion

compensation in optical fibres of 0.5 ps/km/nm, which has to be improved by about a

factor of ten to make the scientific requirement feasible. However, the utilisation of

telecommunication fibre wavelengths give the greatest chance of breakthrough
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research in that scientific area. For example dispersion-free transmission of 610 fs

laser pulses over a 160 km fibre has been demonstrated, but dispersion-free

transmission techniques typically suffer from large losses [216, 180]. On the other

hand active compensation of atmospheric chromatic dispersion of a 250 fs pulse over

a 200 km propagation distance, to a uncertainty of ±10 fs, has been demonstrated

[137]. This indicates that control of atmospheric dispersion of comparably short

pulses is well within reach, especially considering the pulses in this experiment are

travelling vertically, on a much shorter trajectory through the atmosphere. Doppler

shift, conversely, presents much less of a problem. This is straightforward to

calculate based on the velocity of the satellite relative to the Earth. For the worst

possible case (at apogee), the Doppler redshift ν is calculated using the formula:

∆νDoppler = fp × c
c−v0

(6.3)

where c is the speed of light, fp is the frequency of the single photon source

and v0 is the maximum velocity of the satellite at the lowest sampling point. This

gives a shift in photon frequency of 2.48 GHz. Considering the bandwidth size and

that the photon frequency exceeds 193 THz, this is considered negligible. Finally,

the radial motion of the satellite causes constant variation in optical path length. To

keep the path lengths of the interferometer equal this variation must be continuously

compensated for. The time spent in the fibre loop by the part of the photon state in

the upper arm, before it is emitted from the satellite, is given by:

∆t = `

cn
≈ 10−4 s (6.4)

where ` = 60 km is the fibre length and n = 1.5 is the refractive index. Multiplying

this quantity by the radial velocity gives the change in path length between parts

of the superposition due to the motion of the satellite; this change in path is plotted

in Figure 6.5. However, this effect can be precisely calculated in advance and so

either active compensation with optical components or passive compensation at the

post-processing stage can be built into the experiment beforehand.

6.3.4 Loss

Given the repetition rate of the laser and strength of attenuation, we can calculate

the expected rate of signal photons registering at the detectors. The analogous

discussion on noise photons reaching the detectors is deferred to § 6.3.5. There are

three major sources of signal attenuation: divergence of the beam from the

transmitting telescope to the ground; loss due to atmospheric irradiance and

interference; and loss within the fibres.
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Figure 6.5: Path length difference and velocity difference vs. time, due to motion of
the satellite. The solid blue line shows the free-space path length difference, and the
dashed green line shows the rate of change of this difference. This is compensated for
in post-processing, rather than in-flight.

First, we examine the effects of atmospheric transmission. A wavelength of

1550nm is deemed suitable as it is standardised for telecoms use, maximises

transmittivity in the fibre and is not readily absorbed by the atmosphere. The high

frequency of the emitted photon allows us to ignore ionospheric effects on

polarisation and is easily distinguishable from auroral activity over the ground

stations [46]. Assuming homogeneity, using a variant of the Beer-Lambert Law we

can estimate the probability of a single photon passing through the atmosphere as:

Pr(transmission)= exp
(−τ0

η0

)
(6.5)

Where τ0 is the optical depth of the atmosphere, and η0 is the angle of incidence of

the beam. The optical depth varies over time and depends on myriad dynamic

factors such as aerosol content, atmospheric mixing and Raman and Rayleigh

scattering. Modelling these effects is essential, so one might consider optical depth

readings from MODIS, MISR or future Sentinel satellites. A numerical weather

prediction model might then be produced detailing daily optical depth over ground

stations. An alternative might be to model turbulence transfer functions as in [195].

As shown in Figure 6.6, we can allow for an optical depth of 0.5 before the satellite

signal is severely attenuated. Combining these factors produces an estimate for the

atmospheric transmission loss to be '−2.3dB.

As for beam divergence, a downlink direction is chosen as accentuated divergence
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Figure 6.6: Probability of a photon to be transmitted through the atmosphere with
respect to zenith angle, θ, and various optical depths, d. An optical depth, d, of 0.5
corresponds to high levels of pollution. Further calculations assume d=0.37, giving
an atmospheric transmission probability of 0.69 at zenith.

would then occur only in the last 12 km of travel. This downlink beam divergence can

be computed for a photon of wavelength λ by:

θdiv =
λ

πw0
= 1.6µrad (6.6)

where w0 =30 cm corresponds to the radius of the transmitting telescope on the

satellite. Consequently, the beam diameter on the ground at maximum and

minimum altitude is given by Dground ' 2hθ, which implies that

58m ≤ Dground ≤ 105m, taking bounding values for the altitude as

18000m≤ h ≤ 32000m.

Atmospheric turbulence must also be considered. As the atmospheric

parameters used for post-processing are extracted from data from the reference

laser, this turbulence must not radically change in the time between measurement

of the reference laser and of the single photon source. Assuming that the gap

between reference and single photon measurement is half the repetition rate of the

laser, this delay comes to 5 ns. Assuming a wind speed of 10 ms−1, an air parcel

would move by about 50 nm in some direction between the single photon
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measurement and reference laser measurement. This is considered negligible

compared to other atmospheric effects.

Atmospheric transmission loss, turbulence and beam divergence can be compiled

into a “link budget” that calculates the full transmission loss from satellite to

ground station. We can modify and simplify the Friis transmission equation to give

the following link budget equation [203]:

Loss(dB)= 10log
[(
πDT DR

4λh

)2
LpL t

]
, (6.7)

where here DT is the transmitter diameter, DR is the receiver diameter, λ is the

wavelength of the single photon source, h is the satellite altitude, Lp is the pointing

loss (taken to be 0.63 [215]), and L t the atmospheric transmission loss as calculated

above. Assuming an apogee of 32000 km and a lowest altitude bin of 18000 km, a

ground receiver diameter of 3 m, a satellite transmitter diameter of 0.6 m, and

superconducting detector efficiencies of about 90% [152]; we calculate the baseline

signal gain from the link budget to be -30 dB at perigee, and -35 dB at apogee.

Further factoring in losses from the optical fibre of -15.5 dB and fibre blackening

from radiation of -1.7 dB, the link budget achieves a total attenuation of -52.2 dB in

the worst case, towards the end of mission lifetime. Of course, to further reduce

signal attenuation, one could increase the aperture diameters of the receiver and

transmitter. However, this causes a loss in manoeuvrability and a significant cost

increase for rapidly decreasing returns.

6.3.5 Noise

A feasibility case must also ensure a signal-to-noise ratio (SNR) great enough to

produce enough meaningful data for statistical analysis. It must be stressed that

the signal received on Earth is fixed by the link budget above, however since we are

trying to detect a single photon from a plethora of solar and planetary photon noise,

optimising the SNR is crucial.

The effect of noise on space to ground quantum channels has previously been

explored [143]. The noise power received by the ground telescope (Pb) can be

expressed as

Pb =
1
4

HbΩfovπD2
R∆ν∆td , (6.8)

where Hb is the brightness of the sky in units of W m−2 sr−1 µm−1, Ωfov is the field of

view, ∆ν is the bandwidth and ∆td is the detection time. Typical sky brightness for

quantum cryptography applications is discussed in [143], using data from [138].

However, the data therein must be modified in light of the experiment proposed
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here. Firstly, the data presented in [143, 138] is for a frequency band just below

1550 nm, which is subject to much less noise than at 1550 nm itself. Conversely, the

primary source of noise photons at 1550 nm is hydroxyl airglow, the strength of

which is strongly dependent on ambient temperature. The data from [138] assumes

a receiving station in the tropics at Mauna Kea, whereas we propose an arctic

station at Svalbard. Utilising instead polar sky brightness data from [181], we take

a sky brightness of 2×10−5 Wm−2 sr−1µm−1 at our operational frequency. The

received signal band is filtered to a bandwidth of 15 nm, corresponding to twice the

bandwidth of the single photon pulses (twice the full width at half maximum of the

Lorentzian pulse). The field of view of the receiving telescope is assumed to be

10µrad, but the effective field of view is further reduced by a factor of 10 with a

variable iris diaphragm [200]. Noise power is further reduced with a 50ps time gate

filter leading to an available detection time of 50ms per second. Reflections from the

satellite or its black body radiation do not significantly contribute to the background

noise [143]. Besides received background photons, total noise power also depends on

the dark count rate of the single photon detectors. Superconducting detectors have

negligible intrinsic dark count rate but as a worst case estimate the detector system

dark count rate is assumed to be 1kHz (although a large fraction of these counts are

neglected due to time gating) [152]. The rate of detected signal photons is calculated

as 590 Hz (using the repetition rate of the laser, attenuation and loss). Combining

this figure with the expected noise from ambient photons and system dark count

gives an SNR ≈ 9.0=9.6dB.

6.4 Hypothesis testing

Once an experimental profile has been outlined, we can perform a statistical

analysis to extract the confidence with which we can confirm, or refute, the

hypothesis in Eq. 6.2 (and likewise, the theoretical analysis presented in [237]). We

assume data taken in k altitude bins, uniformly spaced in satellite height h from

hmin =18000 km to hmax =32000 km, with n counts per bin. Then, we take normally

distributed experimental parameters with mean as given in the specification in

§ 6.3.1, and variance as fixed by the discussion on stability in § 6.3.2. We assume

that a fraction of the photons are lost according to the link budget in § 6.3.4, and

that there is an ambient background of noise photons as per § 6.3.5. We then

perform Monte Carlo simulations for a range of number of altitude bins, k, and

counts per altitude bin, n, to generate artificial data sets given this initial

prescription. In order to extract a statistical significance from these simulations, we

perform a Kolmogorov-Smirnov statistical significance test between the simulated
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Figure 6.7: Monte Carlo estimation of the number of counts per altitude bin required
in order to confirm (or refute) Eq. 6.2 to a specified confidence. Horizontal lines
indicate increasing "sigmas" of confidence, descending from 1σ to 5σ.

data set and the mathematical formulation in Eq. 6.2 and [237]. The test is devised

to extract the goodness of fit for a data set to an arbitrary functional hypothesis.

Using this test, we can predict the number of single photons that must be sent in

order to test the hypothesis to a specified confidence.

The consequential data from the simulation and statistical test is shown in

Figure 6.7, for k = 500 altitude bins. Here, we can see that the number of received,

true counts per altitude bin must exceed ≈ 6.5 × 105 counts in order to test the

hypothesis to a & 5σ confidence. Given the figure for total loss of −52.2 dB, this

amounts to a necessary emission total of ≈ 1011 single photons per altitude bin.

Given the repetition rate of the laser and the degree of attenuation, we expect raw

emission rates of 100 MHz and thus reach the required emission total in each

altitude bin within ∼ 1000 seconds = 16.7 minutes of continuous operation.

6.5 Mission design

In order to reach the desired confidence defined in § 6.4, data must be taken over a

sufficiently large difference in gravitational potential. An orbit with a perigee of

700 km and an apogee of 32000 km gives access to a relativistic time delay of 150 fs,

which is both large enough to be resolved by the detectors and still gives a

reasonable count rate at the apogee. During the measurement procedure, every
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other light source introduces noise. The ambient sunlight is indeed strong enough to

wash out the signal from the satellite. Therefore, measurements must be performed

when the ground station is not illuminated by the Sun. Additionally, in order to

have the maximum number of measurements per orbit and to minimise noise

photons from airglow, the ground station needs to be placed as close as possible to

the North Pole. These considerations lead to the selection of the ground station

located in Svalbard, Norway. By considering the maximum optical path that gives a

valid measurement and the movement capabilities of the ground telescope, a

connection cone of 45° around the zenith can be defined. This allows satellite access

times for up to 7 hours per orbit. This ground station is ideal for the mission, though

it introduces a constraint on orbital inclination. In fact, only a polar orbit can

provide the maximum visibility time from the ground.

The range of orbital heights chosen to send single photons is from 18000 km to

32000 km (to minimise special relativistic effects, as discussed in § 6.2.1). Given the

number of altitude bins and length of measurement windows, we estimate that a

mission lifetime of 1.5 years will completely satisfy the previously stated

requirements. The mission profile is thus composed of three different phases. The

first, starting immediately after launch, is a 6-month commissioning period used to

calibrate the orbit and the measurement system with laser ranging and radio

communication. During the satellite motion, due to the perturbation from the

oblateness of the Earth and the high eccentricity of the orbit, the orbital apse line

rotates clockwise with a rate of 77.1°/year. With an initial argument of perigee of

ω = 350° and a launch during Svalbard’s spring season, after the commissioning

phase ω' 310°, meaning that the apogee is contained in the ground station visibility

cone. This situation is represented by the thicker line in Figure 6.8. The main

operational phase thus begins in winter and lasts for approximately 6 months. It is

then followed by a second mission phase in Svalbard’s summer, during which the

first results are examined and the orbit is further calibrated. Finally, the last

6-month phase provides additional measurements. At the end of the 1.5-year

lifetime, a 55 ms−1 thruster burn lowers the perigee to approximately 200 km. This

manoeuvre eventually leads to a further lowering of the apogee and then to a

controlled de-orbit into the atmosphere.

The total satellite mass is approximated at 400 kg. The small spacecraft size

allows using the VEGA launcher in order to bring the satellite into a parking orbit

with a perigee of 700 km and an apogee of 20000 km. The final orbit is then reached

using an on board bi-propellant propulsion system through a perigee burn with a ∆V

of 323 ms−1 .
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Figure 6.8: Schematic of mission phases and orbit drift. Note the division into first
and second operational phases.

6.6 Risk analysis

6.6.1 Radiation effects

The spacecraft’s immediate radiation environment, composed of fluxes from the

solar wind and galactic cosmic rays, has a non-negligible effect on the performance

of the components. During its orbit around Earth, the satellite passes twice through

the Van Allen belts. Therefore, suitable shielding is necessary to ensure the correct

operation of the payload. Particular precaution has to be taken to shield the spools

of optical fibre, due to the effect of Radiation-Induced Attenuation (RIA). Single

mode fibres with an RIA of 0.5 dB/km per 9000 rad have been demonstrated in the

literature [221], a figure which can be used for a worst-case analysis. Assuming a

20 mm thick spherical layer of aluminium shielding, the fibre receives an estimated

Total Ionizing Dose (TID) between 500 and 2000 rad/year, which yields an RIA

between -1.7 and -6.7 dB/year. An aluminium shielding of 2 mm is provided for the

lasers and the optical bench. This is also ample shielding to guarantee low radiation

doses for the remaining optics. The blackening of fibre cables due to radiation is

thus one of the main operational risks. Although this process is slowed by adequate

shielding, occurrence at a higher than expected rate would pose a major obstacle to

collecting adequate data. Active avoidance of the Van Allen belts by modifying the

orbit could be pursued, if needed.
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Figure 6.9: Total ionizing dose as a function of the aluminium shielding. Choice of
shielding thickness is a compromise between continued performance of the optical
fibres and payload weight.

6.6.2 Thermal control systems

During the mission, the satellite undergoes cyclic eclipses; the resulting

temperature fluctuations have to be analysed in order to design the thermal control

system. The most critical requirement is the temperature stability of the optical

bench. Insulation ensures that the fibre temperature remains within 0.5 K of the

equilibrium value. Specifically, the satellite is equipped with a Multi Layer

Insulation (MLI) aluminium and Kapton coating and heat pipes to convey and

redistribute heat. With the appropriate sizing for radiators and heat pipes it is

possible to achieve the required thermal stability, although this represents another

primary risk for the mission.

6.6.3 Attitude and orbit control systems

Precise determination of the satellite’s orbit and fine pointing are also fundamental.

Firstly, we assumed in § 6.3.4 that the satellite’s pointing accuracy is 0.5µrad, with

0.1 mrad/s maximum slew rate. This strict requirement ensures efficient

transmission of the required number of photons to the ground, but is a relevant risk

for the mission. Indeed, if the satellite failed on maintaining the required accuracy,

a prohibitively large fraction of the signal photons would be lost. The satellite is

thus equipped with a tracking telescope to have a first estimate of the attitude;

then, two star trackers refine the determination. A system of reaction wheels and
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vibration dampers allows for a fine control of the satellite orientation.

As mentioned above, orbital determination is of key importance for the mission.

Indeed, in order to account for the transmission error due to the radial motion of

the satellite, the radial velocity must be known to within ∼ 1 mm/s precision. This is

feasible with current radio tracking systems working at either S- or X-band. In fact,

the commonly used Ultra-Stable Oscillators often have a Van Allen stability better

than 10−13 over an integration time from 10 s to 1000 s, which is completely adequate

to fulfil the requirement.

6.7 Outlook

We have demonstrated herein a proposal capable of probing the interplay between

quantum mechanics and general relativity using single photon interferometry - in

particular, exploring both the dichotomous nature of time in the two theories, and

the extent to which minimal coupling models are a good fit for a prospective theory

of quantum gravity. Moreover, the apparatus is well within the reach of current

quantum optics technology, and there is already historical precedent for

space-qualification and launch of similar payloads. Conversely, we highlight optical

pulse dispersion as a particularly acute problem for the successful operation of this

experiment in the near future. However, if this hurdle can be overcome by near-term

dispersion compensation devices, this experiment would itself provide a strong

technological precedent for future projects involving commercial quantum

communications satellites.
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A P P E N D I X A

VERIFICATION OF QUANTUM STATES:
ADDITIONAL CALCULATIONS

A.1 Bell tests

We first prove Theorem 2 in § 2.1.3 relating the copy complexity for a CHSH test with

the mean squared error (MSE).

Theorem 2 (restated) (Bell test MSE [212]). Given a CHSH game carried out on

n identical copies of a two-qubit state with expected Bell parameter SCHSH , to bound

the MSE by ∆2 it is necessary for the verifier to measure a number of copies

n ≥ 16−|SCHSH |2
∆2 . (A.1)

Proof. Suppose that we have a sequence of random variables, {X1 . . . Xn}, such that

their expectation values are E(X i) = µi. Then define the covariance matrix Γ, with

elements given by

Γ jk = E[(X j −µ j)(Xk −µk)]. (A.2)

We would like to take the outcomes from the sequence of random variables, and

combine them in such a way as to get an estimate of a single quantity. In particular,

using the vectorial shorthand X = (X1, X2, . . . Xn)> and µ= (µ1,µ2, . . .µn)>, we will be

interested in the weighted average a ·X, for some vector of positive weights a. We

assess the quality of the estimate using the mean squared error (MSE), denoted ∆2;
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which in this instance is given by

∆2 := E[|a ·X−a ·µ|2] (A.3)

= E
[∑

j,k
a jak X j Xk −a jakµ j Xk −a jakµk X j +a jakµ jµk

]

= E
[∑

j,k
a j(X j −µ j)(Xk −µk)ak

]

= 1
n

∑
j,k

a jE[(X j −µ j)(Xk −µk)]ak

= a>Γa
n

. (A.4)

In a CHSH test, each trial is a random variable drawn from a distribution that is

dependent on (i) Alice and Bob’s choice of measurement setting; and (ii) measurement

outcomes for that particular setting. Index the former with i ∈ {0,1} and j ∈ {0,1} for

Alice and Bob, respectively, and the latter with outcomes a and b. If we assume that

each choice of setting for Alice and Bob is equally likely, then write the unconditional

probability distribution governing outcomes as p(i, j,a,b) = 1
4 p(a,b|i, j). Then the

CHSH parameter is

SCHSH =∑
i, j

∑
a,b

4p(i, j,a,b) ·a ·b ·δ(i, j), (A.5)

where the quantity δ(i, j) = −1 for i = 1, j = 1 and δ(i, j) = 1 otherwise. Denote the

random variable governing the drawing of a sample from the distribution p(i, j,a,b)

as X (i, j,a,b); then the experimental estimate of the CHSH parameter is

Sest
CHSH =∑

i, j

∑
a,b

4X (i, j,a,b) ·a ·b ·δ(i, j). (A.6)

Then from Eq. A.4, the mean squared error between the true and estimated

parameter is given by

∆2
CHSH = E[(SCHSH −Sest

CHSH)2]= c>Γ(p)c
n

, (A.7)

where c is a vector with elements ci jab = δ(i, j) · a · b. Using the identity for the

covariance matrix that Γkl = E[(Xk −µk)(X l −µl)] = E[Xk X l]−µkµl , we can rewrite

this expression as

∆2
CHSH = E[|SCHSH −Sest

CHSH |2]= c>Γ(p)c
n

= 1
n

∑
i, j,a,b

(
|ci jab|2 −|c2

i jab p(i, j,a,b)|2
)

= 16−|SCHSH |2
n

. (A.8)
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Hence, if we wish to carry out a CHSH test such that the mean squared error is at

most ∆2, then we need a number of trials

n ≥ 16−|SCHSH |2
∆2 . (A.9)

We now prove Lemma 3, and convert the MSE bound into a fidelity bound.

Lemma 3 (restated). Consider a CHSH test carried out on n copies of an output

state claimed to be |ψθ〉 = sinθ|00〉+ cosθ|11〉, where we must use this test in order to

discriminate from a state σ such that F(|ψθ〉,σ) = 1− ε, 0 ≤ ε≤ 1
2 . Then the root MSE

between these two cases is given by

∆= |ε(Sθ−Sφ)−
√
ε(1−ε)S j| (A.10)

for ε-independent parameters Sθ, Sφ and S j that depend upon |ψθ〉, σ, and the choice

of calibration for the CHSH test. Thus there is a lower bound on the copy complexity:

n ≥ 16−S2
θ

ε2(Sθ−Sφ−S j)2 (A.11)

copies are necessary to verify that σ is within infidelity ε to the target state |ψθ〉 using

a CHSH test.

Proof. We can decompose a generic σ into the following form:

σ= (1−ε)|ψθ〉〈ψθ|+ε
∑
j,k

c jk|φ j〉〈φk|+
√
ε(1−ε)∑

k
(bk|ψθ〉〈φk|+b∗

k|φk〉〈ψθ|). (A.12)

Then if we denote the CHSH operator by S, by linearity of expectation we have that

tr(Sσ)= (1−ε)tr(S|ψθ〉〈ψθ|)+ε
∑
j,k

c jk tr(S|φ j〉〈φk|)

+
√
ε(1−ε)∑

k
(bk tr(S|ψθ〉〈φk|)+b∗

k tr(S|φk〉〈ψθ|))

:= (1−ε)Sθ+εSφ+
√
ε(1−εS j. (A.13)

Then the root MSE between |ψθ〉 and σ is given by

∆= |Sθ− (1−ε)Sθ−εSφ−
√
ε(1−εS j| = |ε(Sθ−Sφ)−

√
ε(1−ε)S j|. (A.14)

Using Theorem 2, the copy complexity can then be bounded by

n ≥ 16−S2
θ

∆2 = 16−S2
θ

ε(
p
ε(Sθ−Sφ)−p

1−εS j)2
. (A.15)

For 0≤ ε≤ 1
2 , we have that

p
ε≤p

1−ε, and so we can give the tidier lower bound

n ≥ 16−S2
θ

ε2(Sθ−Sφ−S j)2 . (A.16)
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A.2 Direct fidelity estimation

We now give a proof of Theorem 4 in § 2.1.4, that there is a sufficient choice of

parameters for the verifier in the DFE protocol that guarantee that the estimated

fidelity is close to the true fidelity of the output state with the target, with high

probability.

Theorem 4 (restated) (Direct fidelity estimation [84]). Suppose the verifier makes

the following choices for the parameters `,mi,Ci and pi:

`= 8
ε2δ

; pi = |〈ψ|σi|ψ〉 |2
d

; mi = dδ
4| 〈ψ|σi|ψ〉 |2

log
4
δ

; Ci = 1
〈ψ|σi|ψ〉

. (A.17)

Then it is guaranteed that

Pr[|X̃ −F| ≥ ε]≤ δ. (A.18)

Proof. Firstly, we show that the estimate is close to the true fidelity in expectation;

then we show that an imperfect estimate is sufficiently close to its expectation value.

The expectation of the quantity X i is given by

E(X i)= Ci

mi

∑
j
E[ai j]= Ci

mi

∑
j

tr(ρσi)= Ci

mi
mi tr(ρσi)= tr(ρσi)

〈ψ|σi|ψ〉
, (A.19)

and so the expectation of X distributed over p is

Ep(X )=∑
i

piE(X i)=
∑

i

〈ψ|σi|ψ〉tr(ρσi)
d

= tr(ρ|ψ〉〈ψ|)= F. (A.20)

Suppose now that all the X i ’s have been estimated perfectly, but we only have a finite

number ` of them; then call the overall estimate X . We wish to bound the difference

between X and F. So, use Chebyshev’s inequality; that is, for a random variable R

and parameter ω> 0,

Pr[|R−E(R)| ≥ωVar(R)]≤ 1
ω2 . (A.21)

We would like to show

Pr
[
|X −F| ≥ ε

2

]
≤ δ

2
, (A.22)

and so we need ω−2 = δ
2 , and ωVar(X ) = ε

2 . Rearranging gives Var(X ) = ε
p
δ

2
p

2
. Taking

` repetitions implies a variance of 1p
`
, and so ` = 8

ε2δ
repetitions suffices to satisfy

Eq. A.22.

Now, we consider estimating the X i ’s with finite precision, giving an overall

estimate X̃ , and then bounding the difference between X̃ and X . By Hoeffding’s

inequality, we have that for n trials:

Pr
[
|X̃ − X | ≥ ε

2

]
≤ 2exp

{
−nε2

2

}
= δ

2
. (A.23)
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A.2. DIRECT FIDELITY ESTIMATION

Rearranging for n, the number of trials, gives

n = 2
ε2 log

4
δ

. (A.24)

The expected number of measurements is

n = ∑̀
i=1

pimi =
∑̀
i=1

| 〈ψ|σi|ψ〉 |2
d

mi. (A.25)

It can be readily checked that by substituting in the verifier’s choice of mi, this

reduces to Eq.A.24. The guarantee is satisfied by combining Eqs. A.22 and A.23.
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A P P E N D I X B

TWO-QUBIT FIDELITY ESTIMATION:
PROTOCOL RECIPE

We run the minimum-variance fidelity estimation protocol in Thm. 18, for states of

the form |ψ〉 = sinθ|00〉 + cosθ|11〉, for a range of different values of θ. However,

the photonic chip is only capable of carrying out rank 1 projective measurements;

i.e. applying projectors of the form |η〉〈η| for some product state |η〉. Thus each higher

rank projector in the optimal strategy must be “unpacked” into rank 1 components. If

we let the total integration time be T, then the optimal protocol is shown in Table B.1,

overleaf.
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Meas.
setting

no.
Project onto Int. time

1 |HH〉 T
4

(
2−sin(2θ)
4+sin(2θ)

)
2 |VV 〉 T

4

(
2−sin(2θ)
4+sin(2θ)

)
3 |HV 〉 T

4

(
2−sin(2θ)
4+sin(2θ)

)
4 |V H〉 T

4

(
2−sin(2θ)
4+sin(2θ)

)
5 ( 1p

1+tanθ
|H〉+ e

2πi
3p

1+cotθ
|V 〉)⊗ ( 1p

1+tanθ
|H〉+ e

πi
3p

1+cotθ
|V 〉) T

3

(
1+sin(2θ)
4+sin(2θ)

)
6 ( 1p

1+cotθ
|H〉− e

2πi
3p

1+tanθ
|V 〉)⊗ ( 1p

1+tanθ
|H〉+ e

πi
3p

1+cotθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
7 ( 1p

1+tanθ
|H〉+ e

2πi
3p

1+cotθ
|V 〉)⊗ ( 1p

1+cotθ
|H〉− e

πi
3p

1+tanθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
8 ( 1p

1+cotθ
|H〉− e

2πi
3p

1+tanθ
|V 〉)⊗ ( 1p

1+cotθ
|H〉− e

πi
3p

1+tanθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
9 ( 1p

1+tanθ
|H〉+ e

4πi
3p

1+cotθ
|V 〉)⊗ ( 1p

1+tanθ
|H〉+ e

5πi
3p

1+cotθ
|V 〉) T

3

(
1+sin(2θ)
4+sin(2θ)

)
10 ( 1p

1+cotθ
|H〉− e

4πi
3p

1+tanθ
|V 〉)⊗ ( 1p

1+tanθ
|H〉+ e

5πi
3p

1+cotθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
11 ( 1p

1+tanθ
|H〉+ e

4πi
3p

1+cotθ
|V 〉)⊗ ( 1p

1+cotθ
|H〉− e

5πi
3p

1+tanθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
12 ( 1p

1+cotθ
|H〉− e

4πi
3p

1+tanθ
|V 〉)⊗ ( 1p

1+cotθ
|H〉− e

5πi
3p

1+tanθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
13 ( 1p

1+tanθ
|H〉+ 1p

1+cotθ
|V 〉)⊗ ( 1p

1+tanθ
|H〉− 1p

1+cotθ
|V 〉) T

3

(
1+sin(2θ)
4+sin(2θ)

)
14 ( 1p

1+cotθ
|H〉− 1p

1+tanθ
|V 〉)⊗ ( 1p

1+tanθ
|H〉− 1p

1+cotθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
15 ( 1p

1+tanθ
|H〉+ 1p

1+cotθ
|V 〉)⊗ ( 1p

1+cotθ
|H〉+ 1p

1+tanθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
16 ( 1p

1+cotθ
|H〉− 1p

1+tanθ
|V 〉)⊗ ( 1p

1+cotθ
|H〉+ 1p

1+tanθ
|V 〉) T

9

(
1+sin(2θ)
4+sin(2θ)

)
Table B.1: The minimum variance fidelity estimation protocol for the state |ψ〉 =
sinθ|00〉+ cosθ|11〉, decomposed into rank 1 projectors. Each block of four settings
(1-4, 5-8, 9-12 and 13-16) forms an orthonormal basis; and the integration times sum
to T.
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A P P E N D I X C

QUANTUM ALGORITHMS FOR THE FINITE

ELEMENT METHOD: ADDITIONAL

CALCULATIONS

C.1 Using HHL to approximate the norm of the solution

Assume that we have an s-sparse system of linear equations Ax = b, for some

Hermitian N × N matrix A such that λmax(A) ≤ 1, λmin(A) ≥ 1/κ. We would like to

approximate ‖x‖ up to accuracy ε‖x‖ using the HHL algorithm [104]. Here we

sketch how the complexity of this task can be bounded, using the same notation as

Theorem 31 (see [104] for further technical details). The HHL algorithm is based on

a subroutine Psim whose probability of acceptance is approximately

p := ‖A−1|b〉‖2/κ2. For any δ > 0, approximating the probability p that a subroutine

accepts, up to additive accuracy δp, can be achieved using amplitude estimation [31]

with O(1/(δ
pp)) uses of the subroutine. Therefore, approximating κ‖b‖pp = ‖x‖ up

to additive accuracy ε‖x‖ can be achieved with

O
(
κ‖b‖
ε‖x‖

)
=O

(κ
ε

)
(C.1)

uses of Psim, where we use λmax(A) ≤ 1. The runtime of the Psim subroutine, which

is described in [104], depends on the accuracy with which its actual probability of

acceptance p̃ approximates p. Using the best known algorithm for Hamiltonian

simulation [20] within Psim, an accuracy of | p̃ − p| = O(εp) can be achieved with

O((sκ/ε)polylog(sκ/ε)) uses of the algorithm PA for determining entries of A. The

runtime is the same up to a polylogarithmic term in N, s, κ, and ε. Each use of the

subroutine within amplitude estimation requires two uses of Pb to reflect about the

state |b〉. Therefore, the overall number of uses of PA required is

O((sκ2/ε)polylog(sκ/ε)), (C.2)
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ADDITIONAL CALCULATIONS

and the number of uses of Pb is O(κ/ε). Note that quantum linear equations

algorithms subsequent to HHL [6, 52] achieved better dependence on κ, ε, or both

for the task of producing |x〉; however, it does not seem obvious how to use these to

achieve improved accuracy for estimating ‖x‖.

C.2 Bounds on inaccuracies in matrix inversion and
classical output

In this appendix we prove the claimed bound in Section 5.6.4 that

α

‖r‖ =O(h
p

s), (C.3)

where α= (∑
i〈φi, r〉2

)1/2. Indeed, we show that

sup
r 6=0

(∑
i〈φi, r〉2

)1/2

‖r‖ =O(h
p

s). (C.4)

Observe that this expression will be maximised when r is in the subspace spanned by

the {φi} functions, so we can assume that r =∑
i riφi for some ri. Then the numerator

satisfies (∑
i
〈φi, r〉2

)1/2

=
(∑

i

(∫
Ω
φi(x)r(x)dx

)2
)1/2

=
(∑

i

(∫
Ω
φi(x)

∑
j

r jφ j(x)

)2)1/2

=
(∑

i

(∑
j

r j

∫
Ω
φi(x)φ j(x)dx

)2)1/2

= ‖Wr‖, (C.5)

where we define the matrix Wi j := ∫
Ωφi(x)φ j(x)dx. Similarly, for the denominator we

have

‖r‖ =
(∫
Ω

(∑
i

riφi(x)

)2

dx

)1/2

=
(∑

i, j
rir j

∫
Ω
φi(x)φ j(x)dx

)1/2

= (rTWr)1/2. (C.6)

Therefore,

α

‖r‖ ≤ sup
r6=0

(
rTWTWr

rTWr

)1/2

= sup
r′,‖r′‖=1

((r′)TWr′)1/2 = ‖W‖1/2. (C.7)

Assume that W is s-sparse. To upper-bound ‖W‖ we use

‖W‖ ≤ smax
i, j

|Wi j| = smax
i, j

|〈φi,φ j〉| ≤ smax
i

‖φi‖2, (C.8)
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C.2. BOUNDS ON INACCURACIES IN MATRIX INVERSION AND CLASSICAL
OUTPUT

where the first inequality can be found in [51], for example, and the second is Cauchy-

Schwarz. Then

‖φi‖2 =
∫

T
φi(x)2dx≤ hd max

x∈T
φi(x)2 =O(h2), (C.9)

where we assume that φi is supported on a region T of diameter at most h, and we

use (5.25) to bound maxx∈T φi(x)2 =O(h2−d). Thus α/‖r‖ =O(h
p

s).
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A P P E N D I X D

SIMULTANEOUS TESTING OF QUANTUM

MECHANICS AND GENERAL RELATIVITY

WITH A QUANTUM OPTICAL SATELLITE:
ADDITIONAL CALCULATIONS

D.1 Derivation of the relativistic time delay

Here we show how to derive Eq. 6.1, generalising the calculation described in [237].

First of all, we identify the reference frame of a distant observer with the ECI

(Earth-Centered Inertial) frame. In order to take into account the velocity of the

satellite and of the ground station rotating with the Earth’s surface, Eq. 7 in [237]

must be modified. Let τr and t be the proper time recorded by a clock at the radial

distance r and the coordinate time recorded by a distant observer, respectively. Then

we have:

dτ2
r =

(
1+ 2V (r)

c2 − v2
r

c2

)
dt2 (D.1)

where V (r) = −GM
r is the Earth’s gravitational potential and vr is the speed of the

clock at the radial distance r, as measured in the ECI frame.

If the fibre refractive index is n and c is the speed of light in vacuum, the proper

time spent by a photon in a fibre loop of proper length l is nl/c. Hence, using Eq. D.1,

we can find the time spent by a photon in the two fibres, as measured by a distant

observer:

tr = nlr

c
√

1+ 2V (r)
c2 − v2

r
c2

(D.2)

where lr is the proper length of the fibre at the radial distance r. Henceforth, the

quantities related to the satellite and to the ground station will be indicated by the

subscripts s and g, respectively. We assume ls = l and lg = l+dl.

183



APPENDIX D. SIMULTANEOUS TESTING OF QUANTUM MECHANICS AND
GENERAL RELATIVITY WITH A QUANTUM OPTICAL SATELLITE:
ADDITIONAL CALCULATIONS

The difference in photon arrival times (referred to as the “time delay”) measured

by a distant observer is ts−tg. Hence, using Eq. D.1 and D.2, the time delay measured

by the local observer at the ground station is:

∆τ=
√

1+ 2Vg

c2 − v2
g

c2 (ts − tg)

= nl
c


√

1+ Vg

c2 − v2
g

c2√
1+ Vs

c2 − v2
s

c2

−1

− ndl
c

.

(D.3)

Taking the first order approximation to the potential and the second order

approximation to the velocity, Eq. D.3 becomes:

∆τ= nl
c3

(
Vg −

v2
g

2
−Vs +

v2
s

2

)
− ndl

c
. (D.4)

Assuming that the ground station is at rest on the geoid, we can use the conventional

geoidal potential W0 to write the time delay of Eq. D.4 as:

∆τ= nl
c3

(
−W0 −Vs +

v2
s

2

)
− ndl

c
. (D.5)

Finally, for an elliptical orbit with semi-major axis a, indicating with h the altitude

of the satellite on the Earth’s surface, the time delay of Eq. D.5 becomes:

∆τ= nl
c3

[
−W0 +GM

(
2

R⊕+h
− 1

2a

)]
− ndl

c
(D.6)

which is exactly Eq. 6.1 in the main chapter.

D.2 Derivation of the expected interferometric signal

Here we show how to obtain Eq. 6.2 in the text.

The commutation relation for continuous mode photon states can be written [144]:

[aν′ ,a†
ν]= δ(ν−ν′). (D.7)

Say we have a Mach-Zehnder interferometer with equal arm lengths, but with

one arm subject to time-dilation; then the state at detector D± with a single input

photon is:

|1〉ν± ∝
∫

dν f (ν)
(
ei νc (xr−cτr) ± ei νc (xr−c(τr+∆τ))

)
a†
ν|0〉.

Where xr is the local Cartesian coordinate (perpendicular to the radial coordinate r),

, τr is the local time coordinate, f (ν) is the spectrum of the light source, ν is angular

frequency, c is the speed of light, and ∆τ is as given in Eq. 6.1.
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The probability of a photon arriving at this detector is then

P± =v′± 〈1|1〉ν±
∝〈0|aν′

∫
dν

∫
dν′ f (ν) f (ν′)

×
(
ei νc (xr−cτr) + ei νc (xr−c(τr+∆τ)

)
×

(
e−i ν

′
c (xr−cτr) + e−i ν

′
c (xr−c(τr+∆τ)

)
a†
ν|0〉

(D.8)

From commutation relation Eq. D.7, it is shown that

ν′〈1|1〉ν = δ(ν−ν′) (D.9)

Thus
P± ∝

∫
dν

∫
dν′

(
ei νc (xr−cτr) + ei νc (xr−c(τr+∆τ)

)
× f (ν) f (ν′)

(
e−i ν

′
c (xr−cτr) + e−i ν

′
c (xr−c(τr+∆τ)

)
×δ(ν−ν′)

=
∫

dν| f (ν)
(
ei νc (xr−cτr) + ei νc (xr−c(τr+∆τ)

)
|2

= 1
2

(
1+

∫
dν| f (ν)|2cos(ν∆τ)

)
.

(D.10)
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