15 research outputs found

    Cognitive Access Policies under a Primary ARQ process via Forward-Backward Interference Cancellation

    Get PDF
    This paper introduces a novel technique for access by a cognitive Secondary User (SU) using best-effort transmission to a spectrum with an incumbent Primary User (PU), which uses Type-I Hybrid ARQ. The technique leverages the primary ARQ protocol to perform Interference Cancellation (IC) at the SU receiver (SUrx). Two IC mechanisms that work in concert are introduced: Forward IC, where SUrx, after decoding the PU message, cancels its interference in the (possible) following PU retransmissions of the same message, to improve the SU throughput; Backward IC, where SUrx performs IC on previous SU transmissions, whose decoding failed due to severe PU interference. Secondary access policies are designed that determine the secondary access probability in each state of the network so as to maximize the average long-term SU throughput by opportunistically leveraging IC, while causing bounded average long-term PU throughput degradation and SU power expenditure. It is proved that the optimal policy prescribes that the SU prioritizes its access in the states where SUrx knows the PU message, thus enabling IC. An algorithm is provided to optimally allocate additional secondary access opportunities in the states where the PU message is unknown. Numerical results are shown to assess the throughput gain provided by the proposed techniques.Comment: 16 pages, 11 figures, 2 table

    On optimal transmission policies for energy harvesting devices

    Full text link

    Cognitive Interference Management in Retransmission-Based Wireless Networks

    Full text link
    Cognitive radio methodologies have the potential to dramatically increase the throughput of wireless systems. Herein, control strategies which enable the superposition in time and frequency of primary and secondary user transmissions are explored in contrast to more traditional sensing approaches which only allow the secondary user to transmit when the primary user is idle. In this work, the optimal transmission policy for the secondary user when the primary user adopts a retransmission based error control scheme is investigated. The policy aims to maximize the secondary users' throughput, with a constraint on the throughput loss and failure probability of the primary user. Due to the constraint, the optimal policy is randomized, and determines how often the secondary user transmits according to the retransmission state of the packet being served by the primary user. The resulting optimal strategy of the secondary user is proven to have a unique structure. In particular, the optimal throughput is achieved by the secondary user by concentrating its transmission, and thus its interference to the primary user, in the first transmissions of a primary user packet. The rather simple framework considered in this paper highlights two fundamental aspects of cognitive networks that have not been covered so far: (i) the networking mechanisms implemented by the primary users (error control by means of retransmissions in the considered model) react to secondary users' activity; (ii) if networking mechanisms are considered, then their state must be taken into account when optimizing secondary users' strategy, i.e., a strategy based on a binary active/idle perception of the primary users' state is suboptimal.Comment: accepted for publication on Transactions on Information Theor

    Adaptive Optimal Stochastic Control of Delay--Tolerant Networks

    Get PDF
    International audienceOptimal stochastic control of delay tolerant networks is studied in this paper. First, the structure of optimal two-hop forwarding policies is derived. In order to be implemented, such policies require knowledge of certain global system parameters such as the number of mobiles or the rate of contacts between mobiles. But, such parameters could be unknown at system design time or may even change over time. In order to address this problem, adaptive policies are designed that combine estimation and control: based on stochastic approximation techniques, such policies are proved to achieve optimal performance in spite of lack of global information. Furthermore, the paper studies interactions that may occur in the presence of several DTNs which compete for the access to a gateway node. The latter problem is formulated as a cost-coupled stochastic game and a unique Nash equilibrium is found. Such equilibrium corresponds to the system configuration in which each DTN adopts the optimal forwarding policy determined for the single network problem

    Discrete-time controlled markov processes with average cost criterion: a survey

    Get PDF
    This work is a survey of the average cost control problem for discrete-time Markov processes. The authors have attempted to put together a comprehensive account of the considerable research on this problem over the past three decades. The exposition ranges from finite to Borel state and action spaces and includes a variety of methodologies to find and characterize optimal policies. The authors have included a brief historical perspective of the research efforts in this area and have compiled a substantial yet not exhaustive bibliography. The authors have also identified several important questions that are still open to investigation
    corecore