738 research outputs found

    Out-of-Distribution Detection of Melanoma using Normalizing Flows

    Get PDF
    Generative modelling has been a topic at the forefront of machine learning research for a substantial amount of time. With the recent success in the field of machine learning, especially in deep learning, there has been an increased interest in explainable and interpretable machine learning. The ability to model distributions and provide insight in the density estimation and exact data likelihood is an example of such a feature. Normalizing Flows (NFs), a relatively new research field of generative modelling, has received substantial attention since it is able to do exactly this at a relatively low cost whilst enabling competitive generative results. While the generative abilities of NFs are typically explored, we focus on exploring the data distribution modelling for Out-of-Distribution (OOD) detection. Using one of the state-of-the-art NF models, GLOW, we attempt to detect OOD examples in the ISIC dataset. We notice that this model under performs in conform related research. To improve the OOD detection, we explore the masking methods to inhibit co-adaptation of the coupling layers however find no substantial improvement. Furthermore, we utilize Wavelet Flow which uses wavelets that can filter particular frequency components, thus simplifying the modeling process to data-driven conditional wavelet coefficients instead of complete images. This enables us to efficiently model larger resolution images in the hopes that it would capture more relevant features for OOD. The paper that introduced Wavelet Flow mainly focuses on its ability of sampling high resolution images and did not treat OOD detection. We present the results and propose several ideas for improvement such as controlling frequency components, using different wavelets and using other state-of-the-art NF architectures

    Constraining cosmological parameters from N-body simulations with Variational Bayesian Neural Networks

    Get PDF
    Methods based on Deep Learning have recently been applied on astrophysical parameter recovery thanks to their ability to capture information from complex data. One of these methods is the approximate Bayesian Neural Networks (BNNs) which have demonstrated to yield consistent posterior distribution into the parameter space, helpful for uncertainty quantification. However, as any modern neural networks, they tend to produce overly confident uncertainty estimates and can introduce bias when BNNs are applied to data. In this work, we implement multiplicative normalizing flows (MNFs), a family of approximate posteriors for the parameters of BNNs with the purpose of enhancing the flexibility of the variational posterior distribution, to extract Ωm\Omega_m, hh, and σ8\sigma_8 from the QUIJOTE simulations. We have compared this method with respect to the standard BNNs, and the flipout estimator. We found that MNFs combined with BNNs outperform the other models obtaining predictive performance with almost one order of magnitude larger that standard BNNs, σ8\sigma_8 extracted with high accuracy (r2=0.99r^2=0.99), and precise uncertainty estimates. The latter implies that MNFs provide more realistic predictive distribution closer to the true posterior mitigating the bias introduced by the variational approximation and allowing to work with well-calibrated networks.Comment: 15 pages, 4 figures, 3 tables, submitted. Comments welcom

    Combining Normalizing Flows and Quasi-Monte Carlo

    Full text link
    Recent advances in machine learning have led to the development of new methods for enhancing Monte Carlo methods such as Markov chain Monte Carlo (MCMC) and importance sampling (IS). One such method is normalizing flows, which use a neural network to approximate a distribution by evaluating it pointwise. Normalizing flows have been shown to improve the performance of MCMC and IS. On the other side, (randomized) quasi-Monte Carlo methods are used to perform numerical integration. They replace the random sampling of Monte Carlo by a sequence which cover the hypercube more uniformly, resulting in better convergence rates for the error that plain Monte Carlo. In this work, we combine these two methods by using quasi-Monte Carlo to sample the initial distribution that is transported by the flow. We demonstrate through numerical experiments that this combination can lead to an estimator with significantly lower variance than if the flow was sampled with a classic Monte Carlo
    corecore