10 research outputs found

    An Accelerated Proximal Coordinate Gradient Method and its Application to Regularized Empirical Risk Minimization

    Get PDF
    We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each block. We develop an accelerated randomized proximal coordinate gradient (APCG) method for minimizing such convex composite functions. For strongly convex functions, our method achieves faster linear convergence rates than existing randomized proximal coordinate gradient methods. Without strong convexity, our method enjoys accelerated sublinear convergence rates. We show how to apply the APCG method to solve the regularized empirical risk minimization (ERM) problem, and devise efficient implementations that avoid full-dimensional vector operations. For ill-conditioned ERM problems, our method obtains improved convergence rates than the state-of-the-art stochastic dual coordinate ascent (SDCA) method

    Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization

    Full text link
    We propose a decomposition framework for the parallel optimization of the sum of a differentiable {(possibly nonconvex)} function and a nonsmooth (possibly nonseparable), convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. The main contribution of this work is a novel \emph{parallel, hybrid random/deterministic} decomposition scheme wherein, at each iteration, a subset of (block) variables is updated at the same time by minimizing local convex approximations of the original nonconvex function. To tackle with huge-scale problems, the (block) variables to be updated are chosen according to a \emph{mixed random and deterministic} procedure, which captures the advantages of both pure deterministic and random update-based schemes. Almost sure convergence of the proposed scheme is established. Numerical results show that on huge-scale problems the proposed hybrid random/deterministic algorithm outperforms both random and deterministic schemes.Comment: The order of the authors is alphabetica

    A generic coordinate descent solver for nonsmooth convex optimization

    Get PDF
    International audienceWe present a generic coordinate descent solver for the minimization of a nonsmooth convex objective with structure. The method can deal in particular with problems with linear constraints. The implementation makes use of efficient residual updates and automatically determines which dual variables should be duplicated. A list of basic functional atoms is pre-compiled for efficiency and a modelling language in Python allows the user to combine them at run time. So, the algorithm can be used to solve a large variety of problems including Lasso, sparse multinomial logistic regression, linear and quadratic programs

    Block stochastic gradient iteration for convex and nonconvex optimization

    Full text link
    The stochastic gradient (SG) method can minimize an objective function composed of a large number of differentiable functions, or solve a stochastic optimization problem, to a moderate accuracy. The block coordinate descent/update (BCD) method, on the other hand, handles problems with multiple blocks of variables by updating them one at a time; when the blocks of variables are easier to update individually than together, BCD has a lower per-iteration cost. This paper introduces a method that combines the features of SG and BCD for problems with many components in the objective and with multiple (blocks of) variables. Specifically, a block stochastic gradient (BSG) method is proposed for solving both convex and nonconvex programs. At each iteration, BSG approximates the gradient of the differentiable part of the objective by randomly sampling a small set of data or sampling a few functions from the sum term in the objective, and then, using those samples, it updates all the blocks of variables in either a deterministic or a randomly shuffled order. Its convergence for both convex and nonconvex cases are established in different senses. In the convex case, the proposed method has the same order of convergence rate as the SG method. In the nonconvex case, its convergence is established in terms of the expected violation of a first-order optimality condition. The proposed method was numerically tested on problems including stochastic least squares and logistic regression, which are convex, as well as low-rank tensor recovery and bilinear logistic regression, which are nonconvex

    Parallel Selective Algorithms for Big Data Optimization

    Full text link
    We propose a decomposition framework for the parallel optimization of the sum of a differentiable (possibly nonconvex) function and a (block) separable nonsmooth, convex one. The latter term is usually employed to enforce structure in the solution, typically sparsity. Our framework is very flexible and includes both fully parallel Jacobi schemes and Gauss- Seidel (i.e., sequential) ones, as well as virtually all possibilities "in between" with only a subset of variables updated at each iteration. Our theoretical convergence results improve on existing ones, and numerical results on LASSO, logistic regression, and some nonconvex quadratic problems show that the new method consistently outperforms existing algorithms.Comment: This work is an extended version of the conference paper that has been presented at IEEE ICASSP'14. The first and the second author contributed equally to the paper. This revised version contains new numerical results on non convex quadratic problem

    A Unified Algorithmic Framework for Block-Structured Optimization Involving Big Data: With applications in machine learning and signal processing

    Get PDF
    This article presents a powerful algorithmic framework for big data optimization, called the block successive upper-bound minimization (BSUM). The BSUM includes as special cases many well-known methods for analyzing massive data sets, such as the block coordinate descent (BCD) method, the convex-concave procedure (CCCP) method, the block coordinate proximal gradient (BCPG) method, the nonnegative matrix factorization (NMF) method, the expectation maximization (EM) method, etc. In this article, various features and properties of the BSUM are discussed from the viewpoint of design flexibility, computational efficiency, parallel/distributed implementation, and the required communication overhead. Illustrative examples from networking, signal processing, and machine learning are presented to demonstrate the practical performance of the BSUM framework
    corecore