1,378 research outputs found

    Would Current Ad Hoc Routing Protocols be Adequate for the Internet of Vehicles? A Comparative Study

    Get PDF
    In recent years we have seen a great proliferation of smart vehicles, ranging from cars to little drones (both terrestrial and aerial), all endowed with sensors and communication capabilities. It is hence easy to foresee a future with even more smart and connected vehicles moving around, occupying space and creating an Internet of Vehicles (IoV). In this IoV, a multitude of nodes (both static and mobile) will generate a continuous multihop flow of local information to support local smart environment applications. Therefore, one interesting environment for the IoV would be in the form of 3-D mobile ad-hoc networks (MANETs). Unfortunately, MANET routing protocols have generally been designed and analyzed keeping in mind a 2-D scenario; there is no guarantee on how they would support a 3-D topology of the IoV. To this end, we have considered routing protocols deemed as the state-of-the-art for classic MANETs and tested them over 3-D topologies to evaluate their assets and technical challenges

    Data Gathering and Dissemination over Flying Ad-hoc Networks in Smart Environments

    Get PDF
    The advent of the Internet of Things (IoT) has laid the foundations for new possibilities in our life. The ability to communicate with any electronic device has become a fascinating opportunity. Particularly interesting are UAVs (Unmanned Airborne Vehicles), autonomous or remotely controlled flying devices able to operate in many contexts thanks to their mobility, sensors, and communication capabilities. Recently, the use of UAVs has become an important asset in many critical and common scenarios; thereby, various research groups have started to consider UAVs’ potentiality applied on smart environments. UAVs can communicate with each other forming a Flying Ad-hoc Network (FANET), in order to provide complex services that requires the coordination of several UAVs; yet, this also generates challenging communication issues. This dissertation starts from this standpoint, firstly focusing on networking issues and potential solutions already present in the state-of-the-art. To this aim, the peculiar issues of routing in mobile, 3D shaped ad-hoc networks have been investigated through a set of simulations to compare different ad-hoc routing protocols and understand their limits. From this knowledge, our work takes into consideration the differences between classic MANETs and FANETs, highlighting the specific communication performance of UAVs and their specific mobility models. Based on these assumptions, we propose refinements and improvements of routing protocols, as well as their linkage with actual UAV-based applications to support smart services. Particular consideration is devoted to Delay/Disruption Tolerant Networks (DTNs), characterized by long packet delays and intermittent connectivity, a critical aspect when UAVs are involved. The goal is to leverage on context-aware strategies in order to design more efficient routing solutions. The outcome of this work includes the design and analysis of new routing protocols supporting efficient UAVs’ communication with heterogeneous smart objects in smart environments. Finally, we discuss about how the presence of UAV swarms may affect the perception of population, providing a critical analysis of how the consideration of these aspects could change a FANET communication infrastructure

    Position-based routing algorithms for three-dimensional ad hoc networks

    Get PDF
    In position-based routing algorithms, the nodes use the geographical information to make routing decisions. Recent research in this field addresses such routing algorithms in two-dimensional (2 D ) space. However, in real applications, the nodes may be distributed in three-dimensional (3 D ) space. Transition from 2 D to 3 D is not always easy, since many problems in 3 D are significantly harder than their 2 D counterparts. This dissertation focuses on providing a reliable and efficient position-based routing algorithms with the associated pre-processing algorithms for various 3 D ad hoc networks. In the first part of this thesis, we propose a generalization of the Yao graph where the cones used are adaptively centered on the nearest set of neighbors for each node, thus creating a directed or undirected spanning subgraph of a given unit disk graph (UDG). We show that these locally constructed spanning subgraphs are strongly connected, have bounded out-degree, are t -spanners with bounded stretch factor, contain the Euclidean minimum spanning tree as a subgraph, and are orientation-invariant. Then we propose the first local, constant time algorithm that constructs an independent dominating set and connected dominating set of a Unit Disk Graph in a 3 D environment. We present a truncated octahedral tiling system of the space to assign to each node a class number depending on the position of the node within the tiling system. Then, based on the tiling system, we present our local algorithms for constructing the dominating sets. The new algorithms have a constant time complexity and have approximation bounds that are completely independent of the size of the network. In the second part of this thesis, we implement 3 D versions of many current 2 D position-based routing algorithms in addition to creating many new algorithms that are specially designed for a 3 D environment. We show experimentally that these new routing algorithms can achieve nearly guaranteed delivery while discovering routes significantly closer in length to a shortest path. Because many existing position-based routing algorithms for ad hoc and sensor networks use the maximum transmission power of the nodes to discover neighbors, which is a very power-consuming process. We propose several localized power-aware 3 D position-based routing algorithms that increase the lifetime of a network by maximizing the average lifetime of its nodes. These new algorithms use the idea of replacing the constant transmission power of a node with an adjusted transmission power during two stages. The simulation results show a significant improvement in the overall network lifetime over the current power-aware routing algorithm

    Beaconless Position-Based Routing for Mobile Ad-Hoc Networks

    Full text link
    Existing position-based unicast routing algorithms, where packets are forwarded in the geographic direction of the destination, require that the forwarding node knows the positions of all neighbors in its transmission range. This information on direct neighbors is gained by observing beacon messages each node sends out periodically. The transmission of beacons and the storage of neighbor information consumes resources. Due to mobility, collected neighbor information can quickly get outdated which in turn can lead to packet drops. In this paper, we propose a mechanism to perform position-based forwarding without the help of beacons or the maintenance of neighbor tables. In our contention-based forwarding scheme(CBF) the next hop is selected through a distributed contention process using biased timers. To avoid packet duplication, the first node that is selected suppresses the selection of further nodes. We propose three suppression strategies which vary with respect to forwarding efficiency and suppression characteristics. We analyze the behavior of CBF with all three suppression strategies and compare it to an existing greedy routing approach by means of simulation with ns-2. Our results demonstrate that CBF is a promising strategy for position-based routing

    Anchor-Free Localization in Mixed Wireless Sensor Network Systems

    Get PDF
    Recent technological advances have fostered the emergence of Wireless Sensor Networks (WSNs), which consist of tiny, wireless, battery-powered nodes that are expected to revolutionize the ways in which we understand and construct complex physical systems. A fundamental property needed to use and maintain these WSNs is ``localization\u27\u27, which allows the establishment of spatial relationships among nodes over time. This dissertation presents a series of Geographic Distributed Localization (GDL) algorithms for mixed WSNs, in which both static and mobile nodes can coexist. The GDL algorithms provide a series of useful methods for localization in mixed WSNs. First, GDL provides an approximation called ``hop-coordinates\u27\u27, which improves the accuracy of both hop-counting and connectivity-based measurement techniques. Second, GDL utilizes a distributed algorithm to compute the locations of all nodes in static networks with the help of the hop-coordinates approximation. Third, GDL integrates a sensor component into this localization paradigm for possible mobility and as a result allows for a more complex deployment of WSNs as well as lower costs. In addition, the development of GDL incorporated the possibility of manipulated communications, such as wormhole attacks. Simulations show that such a localization system can provide fundamental support for security by detecting and localizing wormhole attacks. Although several localization techniques have been proposed in the past few years, none currently satisfies our requirements to provide an accurate, efficient and reliable localization for mixed WSNs. The contributions of this dissertation are: (1) our measurement technique achieves better accuracy both in measurement and localization than other methods; (2) our method significantly improves the efficiency of localization in updating location in mixed WSNs by incorporating sensors into the method; (3) our method can detect and locate the communication that has been manipulated by a wormhole in a network without relying on a central server

    BLR: Beacon-Less Routing Algorithm for Mobile Ad-Hoc Networks

    Get PDF
    Routing of packets in a mobile ad-hoc network with a large number... this paper is a routing protocol that makes use of location information to reduce routing overhead. However, unlike other position-based routing protocols, BLR does not require nodes to periodically broadcast Hello-messages (called beaconing), and thus avoids drawbacks such as extensive use of scarce battery-power, interferences with regular data transmission, and performance degradation. BLR selects a forwarding node in a distributed manner among all its neighboring nodes with having information neither about their positions nor even about their existence. Data packets are broadcasted and the protocol takes care that just one of the receiving nodes forwards the packet. Optimized forwarding is achieved by applying a concept of Dynamic Forwarding Delay (DFD). Consequently, the node which computes the shortest forwarding delay relays the packet first. This forwarding is detected by the other nodes and suppresses them to relay the same packet any further. Analytical results and simulation experiments indicate that BLR provides efficient and robust routing in highly dynamic mobile ad-hoc networks
    • …
    corecore