10,230 research outputs found

    Arithmetic structures in random sets

    Full text link
    We extend two well-known results in additive number theory, S\'ark\"ozy's theorem on square differences in dense sets and a theorem of Green on long arithmetic progressions in sumsets, to subsets of random sets of asymptotic density 0. Our proofs rely on a restriction-type Fourier analytic argument of Green and Green-Tao.Comment: 22 page

    Random sets and exact confidence regions

    Full text link
    An important problem in statistics is the construction of confidence regions for unknown parameters. In most cases, asymptotic distribution theory is used to construct confidence regions, so any coverage probability claims only hold approximately, for large samples. This paper describes a new approach, using random sets, which allows users to construct exact confidence regions without appeal to asymptotic theory. In particular, if the user-specified random set satisfies a certain validity property, confidence regions obtained by thresholding the induced data-dependent plausibility function are shown to have the desired coverage probability.Comment: 14 pages, 2 figure

    Sums and differences of correlated random sets

    Get PDF
    Many fundamental questions in additive number theory (such as Goldbach's conjecture, Fermat's last theorem, and the Twin Primes conjecture) can be expressed in the language of sum and difference sets. As a typical pair of elements contributes one sum and two differences, we expect that AA>A+A|A-A| > |A+A| for a finite set AA. However, in 2006 Martin and O'Bryant showed that a positive proportion of subsets of {0,,n}\{0, \dots, n\} are sum-dominant, and Zhao later showed that this proportion converges to a positive limit as nn \to \infty. Related problems, such as constructing explicit families of sum-dominant sets, computing the value of the limiting proportion, and investigating the behavior as the probability of including a given element in AA to go to zero, have been analyzed extensively. We consider many of these problems in a more general setting. Instead of just one set AA, we study sums and differences of pairs of \emph{correlated} sets (A,B)(A,B). Specifically, we place each element a{0,,n}a \in \{0,\dots, n\} in AA with probability pp, while aa goes in BB with probability ρ1\rho_1 if aAa \in A and probability ρ2\rho_2 if a∉Aa \not \in A. If A+B>(AB)(BA)|A+B| > |(A-B) \cup (B-A)|, we call the pair (A,B)(A,B) a \emph{sum-dominant (p,ρ1,ρ2)(p,\rho_1, \rho_2)-pair}. We prove that for any fixed ρ=(p,ρ1,ρ2)\vec{\rho}=(p, \rho_1, \rho_2) in (0,1)3(0,1)^3, (A,B)(A,B) is a sum-dominant (p,ρ1,ρ2)(p,\rho_1, \rho_2)-pair with positive probability, and show that this probability approaches a limit P(ρ)P(\vec{\rho}). Furthermore, we show that the limit function P(ρ)P(\vec{\rho}) is continuous. We also investigate what happens as pp decays with nn, generalizing results of Hegarty-Miller on phase transitions. Finally, we find the smallest sizes of MSTD pairs.Comment: Version 1.0, 19 pages. Keywords: More Sum Than Difference sets, correlated random variables, phase transitio

    Countable Random Sets: Uniqueness in Law and Constructiveness

    Full text link
    The first part of this article deals with theorems on uniqueness in law for \sigma-finite and constructive countable random sets, which in contrast to the usual assumptions may have points of accumulation. We discuss and compare two approaches on uniqueness theorems: First, the study of generators for \sigma-fields used in this context and, secondly, the analysis of hitting functions. The last section of this paper deals with the notion of constructiveness. We will prove a measurable selection theorem and a decomposition theorem for constructive countable random sets, and study constructive countable random sets with independent increments.Comment: Published in Journal of Theoretical Probability (http://www.springerlink.com/content/0894-9840/). The final publication is available at http://www.springerlink.co
    corecore