2,304,761 research outputs found

    Estimating graph parameters with random walks

    Full text link
    An algorithm observes the trajectories of random walks over an unknown graph GG, starting from the same vertex xx, as well as the degrees along the trajectories. For all finite connected graphs, one can estimate the number of edges mm up to a bounded factor in O(trel3/4m/d)O\left(t_{\mathrm{rel}}^{3/4}\sqrt{m/d}\right) steps, where trelt_{\mathrm{rel}} is the relaxation time of the lazy random walk on GG and dd is the minimum degree in GG. Alternatively, mm can be estimated in O(tunif+trel5/6n)O\left(t_{\mathrm{unif}} +t_{\mathrm{rel}}^{5/6}\sqrt{n}\right), where nn is the number of vertices and tunift_{\mathrm{unif}} is the uniform mixing time on GG. The number of vertices nn can then be estimated up to a bounded factor in an additional O(tunifmn)O\left(t_{\mathrm{unif}}\frac{m}{n}\right) steps. Our algorithms are based on counting the number of intersections of random walk paths X,YX,Y, i.e. the number of pairs (t,s)(t,s) such that Xt=YsX_t=Y_s. This improves on previous estimates which only consider collisions (i.e., times tt with Xt=YtX_t=Y_t). We also show that the complexity of our algorithms is optimal, even when restricting to graphs with a prescribed relaxation time. Finally, we show that, given either mm or the mixing time of GG, we can compute the "other parameter" with a self-stopping algorithm

    Dynamical systems with heavy-tailed random parameters

    Full text link
    Motivated by the study of the time evolution of random dynamical systems arising in a vast variety of domains --- ranging from physics to ecology ---, we establish conditions for the occurrence of a non-trivial asymptotic behaviour for these systems in the absence of an ellipticity condition. More precisely, we classify these systems according to their type and --- in the recurrent case --- provide with sharp conditions quantifying the nature of recurrence by establishing which moments of passage times exist and which do not exist. The problem is tackled by mapping the random dynamical systems into Markov chains on R\mathbb{R} with heavy-tailed innovation and then using powerful methods stemming from Lyapunov functions to map the resulting Markov chains into positive semi-martingales.Comment: 24 page

    Uncertainty under a multivariate nested-error regression model with logarithmic transformation

    Get PDF
    Assuming a multivariate linear regression model with one random factor, we consider the parameters defined as exponentials of mixed effects, i.e., linear combinations of fixed and random effects. Such parameters are of particular interest in prediction problems where the dependent variable is the logarithm of the variable that is the object of inference. We derive bias-corrected empirical predictors of such parameters. A second order approximation for the mean crossed product error of the predictors of two of these parameters is obtained, and an estimator is derived from it. The mean squared error is obtained as a particular case

    Transform-based particle filtering for elliptic Bayesian inverse problems

    Get PDF
    We introduce optimal transport based resampling in adaptive SMC. We consider elliptic inverse problems of inferring hydraulic conductivity from pressure measurements. We consider two parametrizations of hydraulic conductivity: by Gaussian random field, and by a set of scalar (non-)Gaussian distributed parameters and Gaussian random fields. We show that for scalar parameters optimal transport based SMC performs comparably to monomial based SMC but for Gaussian high-dimensional random fields optimal transport based SMC outperforms monomial based SMC. When comparing to ensemble Kalman inversion with mutation (EKI), we observe that for Gaussian random fields, optimal transport based SMC gives comparable or worse performance than EKI depending on the complexity of the parametrization. For non-Gaussian distributed parameters optimal transport based SMC outperforms EKI

    Approximation of probability density functions for PDEs with random parameters using truncated series expansions

    Full text link
    The probability density function (PDF) of a random variable associated with the solution of a partial differential equation (PDE) with random parameters is approximated using a truncated series expansion. The random PDE is solved using two stochastic finite element methods, Monte Carlo sampling and the stochastic Galerkin method with global polynomials. The random variable is a functional of the solution of the random PDE, such as the average over the physical domain. The truncated series are obtained considering a finite number of terms in the Gram-Charlier or Edgeworth series expansions. These expansions approximate the PDF of a random variable in terms of another PDF, and involve coefficients that are functions of the known cumulants of the random variable. To the best of our knowledge, their use in the framework of PDEs with random parameters has not yet been explored

    Selecting random parameters in discrete choice experiment for environmental valuation: A simulation experiment

    Get PDF
    This paper examines the various tests commonly used to select random parameters in choice modelling. The most common procedures for selecting random parameters are: the Lagrange Multiplier test as proposed by McFadden and Train (2000), the t-statistic of the deviation of the random parameter and the log-likelihood ratio test. The identification of random parameters in other words the recognition of preference heterogeneity among population is based on the fact that an individual makes a choice depending on her/his: tastes, perceptions and experiences. A simulation experiment was carried out based on a real choice experiment and the results indicated that the power of these three tests depends importantly on the spread and type of the tested parameter distribution.choice experiment, simulation, preference heterogeneity, random parameter logit, tests for selecting random parameters
    corecore