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Uncertainty under a multivariate nested-error regression
model with logarithmic transformation1

Isabel Molina

Departamento de Estad́ıstica, Universidad Carlos III de Madrid

Abstract

Assuming a multivariate linear regression model with one random factor, we consider
the parameters defined as exponentials of mixed effects, i.e., linear combinations of fixed and
random effects. Such parameters are of particular interest in prediction problems where the
dependent variable is the logarithm of the variable that is the object of inference. We derive
bias-corrected empirical predictors of such parameters. A second order approximation for
the mean crossed product error of the predictors of two of these parameters is obtained,
and an estimator is derived from it. The mean squared error is obtained as a particular
case.

Key Words: multivariate nested-error regression model, random effects, empirical pre-
dictor, mean squared error, small areas.

1 Introduction

Linear mixed models are nowadays a common tool in many statistical applications, like bio-
statistics, engineering, econometrics and social sciences. When heteroscedasticity and/or lack
of normality is detected in a linear (mixed or not) regression model, a common approach is
to transform the dependent variable to the logarithmic scale. However, often the object of
inferential interest is a characteristic of the variable in the original scale, which is then the
exponential of the transformed variable. This is the case for instance in prediction problems.
In such situations, it can be of interest to predict the value of the exponential of a mixed effect;
that is, a linear combination of fixed and random effects.

In this work we assume that the logarithm of the target variables follow a multivariate linear
regression model with one random factor, also called nested-error regression model, and that
the target parameters are exponentials of mixed effects. We derive bias-corrected empirical
predictors of these parameters, and obtain a second-order approximation for the mean crossed
product error (MCPE) of the predictors of two parameters. The mean squared error (MSE)
can be obtained as a particular case.

The results described in this work are relevant e.g. for small-area estimation, where the
parameters are usually linear combinations of the values of the target variable in the units
of the population (typically means or totals). For illustration, we will introduce the problem
focussing on this application.

Consider a (large) population partitioned into D (small) subpopulations, also called areas
or domains. The “small-area” problem arises when the sample has been extracted from the
whole population, but estimates are required for the small areas, and the sample data coming
from some of these small areas are not enough for deriving direct estimates with acceptable
precision. Here, a direct estimator of a small area characteristic is an estimator calculated
using only the sample data from that small area.

Typically, the way of dealing with this problem is to obtain some kind of indirect estimates,
calculated using the sample data from outside the target area, in order to “borrow strength”
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from other areas. When auxiliary information is available, successful indirect estimates are
the so-called model-based estimates, obtained under the assumption of a regression model.
Among these are the Empirical Best Linear Unbiased Predictors (EBLUPs), derived from a
linear regression model including random area-specific effects that represent the between-area
variation not explained by the auxiliary variables. See the monograph of Rao (2003) for a
collection of the main advances in small-area estimation till the publication date and Jiang
and Lahiri (2006) for a review of the last developments in this field.

It is common to accompany the point estimates with an accuracy measure like the mean
squared error (MSE). Prasad and Rao (1990) obtained a second order approximation of the
MSE of the EBLUP under three different types of models; namely nested-error, random co-
efficient and Fay-Herriot regression models. They estimate the dispersion parameters by a
method of moments. The analogous result for maximum likelihood (ML) or restricted ML
(RML) was given by Das et al. (2004). Under a univariate Fay-Herriot model with logarith-
mic transformation of the dependent variable, recently Slud and Maiti (2006) have proposed a
bias-corrected empirical predictor, and obtained an approximation of the mean squared error
of their proposed predictor.

Suppose now that we are interested in estimating a vector δ = (δ1, . . . , δK) of linear char-
acteristics of K dependent random variables W1, . . . ,WK ; for instance, the means of the K
variables in the small areas. Then a multivariate model, that takes into account the depen-
dency structure among the variables, is likely to improve the precision over the univariate
modelling (see Fay, 1987 and Datta et al., 1991). The problem of estimation of linear param-
eters like means on small areas can be reduced to a prediction problem, which in turn deals
with predicting exponentials of mixed effects (see Section 3).

Here we extend the bias-corrected empirical predictor of Slud and Maiti (2006) to the
setup of a multivariate nested-error regression model with logarithmic transformation of the
K responses. The univariate model is the particular case K = 1.

Further, if we intend to estimate a continuously differentiable function f(δ) ∈ IR of the
K-dimensional characteristic δ and we estimate it with f(δ̂), where δ̂ is an estimator of δ,
then application of Taylor linerization to calculate the mean squared error of f(δ̂) requires the
specification of the mean crossed product errors E[(δ̂i − δi)(δ̂j − δj)], i, j = 1, . . . ,K. Here
we obtain an approximation of the MCPE of the predictors of two parameters defined as
exponentials of mixed effects. The mean squared error of a predictor is a particular case.

The paper is organized as follows. The multivariate nested-error regression model is in-
troduced in Section 2, and the bias-corrected empirical predictors are introduced in Section
3. In Section 4 we give asymptotic representations for the maximum likelihood estimators of
the model dispersion parameters and of the predictors proposed in Section 3. In Section 5
we list the results leading to the approximation of the MCPE of two predictors. In Section
6 we propose an estimator of the MCPE and finally, the Appendix contains the proofs of the
theoretical results.

2 Description of the model

Consider a population partitioned into D small areas of sizes N1, . . . , ND. Let W = (W1, . . . ,WK)′

be the random vector of interest, whose values in the units of the population are wdi =
(wdi1, . . . , wdiK)′, i = 1, . . . , Nd, d = 1, . . . , D. In small area estimation a common tar-
get is to estimate the small area means W̄d = (W̄d1, . . . , W̄dK)′, for d = 1, . . . , D, where
W̄dr = N−1

d

∑Nd
i=1 wdir, r = 1, . . . ,K. Now consider the vector Y = (Y1, . . . , YK)′ of trans-

formed variables Yr = log(Wr), r = 1, . . . ,K. Let ydi = (ydi1, . . . , ydiK)′ be the value of Y in
the i-th unit of the d-th small area, and accordingly, let Xdi = (xdi1, . . . ,xdiK)′ be the K × p
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matrix with the values of the auxiliary variables for the same unit, edi = (edi1, . . . , ediK)′ the
vector of random errors and ud the random effect of area d. We assume that the population
units satisfy the model

ydi = Xdiβ + ud1K + edi, (1)

where 1r denotes an r-vector of ones, β is the p-vector containing the coefficients of the auxiliary
variables, and ud and edi are independent with distributions

edi
iid∼ N(0K ,Σ), ud

iid∼ N(0, σ2), i = 1, . . . , Nd, d = 1, . . . , D. (2)

The following structure is assumed for the covariance matrix Σ, where the restrictions σ2 > 0
and −σ2 < φ < σ2 ensure the positive definiteness,

Σ =


σ2 φ · · · φ

φ σ2 . . .
...

...
. . . . . . φ

φ · · · φ σ2

 .

This structure of the covariance matrix Σ, although very simple, is commonly used in multivari-
ate problems. See for instance the works related to familial data (Srivastava, 1984, Srivastava
and Katapa, 1986, Bhandary and Alam, 2000 or Hobza et al., 2002) or to longitudinal data
(Diggle et al., 2002).

In the inference process, a sample of size n is extracted from the whole population. Let sd

be the set of units sampled from the d-th small area, with size nd, and sc
d the complementary

of sd, that is, the set of units of the same area that have not been sampled, d = 1, . . . , D,
where n =

∑D
d=1 nd. Let us construct the following column vectors and matrices containing

sample elements

yd = coli∈sd
(ydi), Xd = coli∈sd

(Xdi), ed = coli∈sd
(edi), Rd = diagi∈sd

(Σ),
y = col1≤d≤D(yd), X = col1≤d≤D(Xd), e = col1≤d≤D(ed), R = diag1≤d≤D(Rd),

and additionally u = col1≤d≤D(ud) and Z = diag1≤d≤D(1Knd
). The notation coli∈A(Bi) indi-

cates stacking the elements Bi, i ∈ A into a column, and diagi∈A(Bi) denotes the block-diagonal
matrix with blocks Bi, i ∈ A. In this notation, the model is

y = Xβ + Zu + e, e ∼ N(0Kn,R), u ∼ N(0D, σ2
uID),

where Ir denotes the r × r identity matrix. The variance-covariance matrix of y is given by
V = σ2

uZZ′ + R. This matrix is block-diagonal; more explicitly, V = diag1≤d≤D(Vd), where
Vd = σ2

u1Knd
1′Knd

+ Rd, d = 1, . . . , D.
The dispersion parameter space is

Θ = {θ = (σ2
u, σ2, φ)′ : σ2

u, σ2 ∈ (0,M), −σ2 < φ < σ2},

where M < ∞ is a constant. We denote by θ0 = (σ2
u0, σ

2
0, φ0)′ the true, unknown value of the

parameter θ. Sometimes we will also use the notation θ = (θ1, θ2, θ3)′ and θ0 = (θ01, θ02, θ03)′.
Hereafter, for a quantity A that is function of θ, we will omit the argument θ when A is
evaluated at θ0; that is, we will denote A = A(θ0), and we will maintain it when it is evaluated
at θ ∈ Θ; that is, A(θ). Similarly, we will use ∂A/∂θ when the derivative is evaluated at θ0,
and ∂A(θ)/∂θ when is evaluated at θ ∈ Θ.
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3 Predictors of exponentials of mixed effects

Prediction of the original variables wdir based on model (1) involves prediction of the quantities
exp(x′dirβ + ud). This work deals with predicting exponentials of mixed effects; that is, of the
parameters

τk = exp(µk), for µk = λ′kβ + m′
ku,

where λk and mk are constant known vectors. When λk = xdir and mk is a vector of zeros
except for a one in position d we obtain the particular case τk = exp(x′dirβ + ud).

In small area estimation, typical parameters are the small area means W̄dr, that can be
decomposed as

W̄dr = N−1
d

∑
i∈sd

wdir +
∑
i∈sc

d

wdir

 , r = 1, . . . ,K.

An estimator of W̄dr can be obtained through prediction of nonsampled units wdir, i ∈ sc
d.

If θ is known, then the Best Linear Unbiased Predictor (BLUP) of µk = λ′kβ + m′
ku is

given by µ̂k = λ′kβ̂ + m′
kû, where

β̂ = (X′V−1X)−1X′V−1y and û = σ2
uZ

′V−1(y −Xβ̂). (3)

(Henderson, 1975). Following the ideas of Slud and Maiti (2006), an approximately bias-
corrected predictor of τk is ρ̂k exp(µ̂k), where ρ̂k is a bias-correction factor given by

ρ̂k = Ê [exp(µk)] /Ê [exp(µ̂k)] .

Here Ê is an estimate of the expectation obtained by replacing the unknown parameters by
their estimates. An asymptotically (D →∞) correct expression for this predictor under model
(1)-(2) is

τ̂k = exp(µ̂k + αk), where αk = σ2
um

′
k(ID − σ2

uZ
′V−1Z)mk/2.

If θ is unknown, then τ̂k depends on θ through µ̂k = µ̂k(θ) and αk = αk(θ); that is,
τ̂k = τ̂k(θ). Substituting an estimator θ̂ for θ into τ̂k we obtain what is generally called
an empirical predictor. The maximum likelihood estimator (MLE) of θ can be obtained by
maximization of the profile loglikelihood

lP (θ) = c−
(
log |V| − y′Py

)
/2,

where c denotes a constant and

P = V−1 −V−1X(X′V−1X)−1X′V−1.

Let θ̂ be the MLE of θ and V̂ = V(θ̂) the covariance matrix V evaluated at the MLE. Then,
an empirical BLUP of µk is µ̂E

k = µ̂k(θ̂) = λ′kβ̂
E + m′

kû
E , where

β̂E = (X′V̂−1X)−1X′V̂−1y and ûE = σ̂2
uZ

′V̂−1(y −Xβ̂E).

A bias-corrected empirical predictor of τk is then τ̂E
k = exp(µ̂E

k + α̂k), where α̂k = αk(θ̂).
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4 Asymptotic representations

In Theorem 2.1, Das et al. (2004) gave an asy,ptotic representation of θ̂ − θ0, listing the
conditions ensuring that result. Baillo and Molina (2005) verified these conditions for model
(1)-(2). Following a similar approach, in this section we provide a more precise asymptotic
representation of θ̂ − θ0 under model (1)-(2). As a consequence, we obtain an asymptotic
formula for τ̂E

k − τ̂k, result which will lead to an approximated formula for the MCPE in
Section 5.

The following notation is used throughout the paper:

s = ∂lP /∂θ, H = ∂2lP /∂θ2, I = E(−H), (4)

Dj = ∂H/∂θj , dj = s′I−1DjI−1s, j = 1, 2, 3, d = (d1, d2, d3)′, (5)

hk = ∂τ̂k/∂θ and γk = σ2
uV

−1Zmk.

Further, λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of a square
matrix A respectively.

The results of this paper require the following conditions:

(H1) The elements of the vector λk are uniformly bounded as D →∞. The vector mk contains
only zeros except for one element, and this element is bounded as D →∞;

(H2) p < ∞, lim sup
D→∞

( max
1≤d≤D

nd) < ∞ and lim inf
D→∞

( min
1≤d≤D

nd) > 0;

(H3) The elements of the matrix X are uniformly bounded as D →∞;

(H4) lim inf
D→∞

D−1λmin(X′X) > 0;

(H5) lim inf
D→∞

D−1λmin(I) > 0;

For the sake of clarity and completeness, we include below Lemma 1 of Baillo and Molina
(2005), which is an adaptation of Theorem 2.1 of Das et al. (2004) to model (1)–(2).

Lemma 1 (Das et al. 2004, Baillo and Molina 2005)
Let model (1)–(2) satisfy conditions (H2)–(H5). Then, for every η ∈ (0, 1), there exists a
subset of the sample space B on which, for large D, it holds that |θ̂ − θ0| < D−η/2 and

θ̂ = θ0 + I−1s + r∗, (6)

where |r∗| < D−η v∗, for a random variable v∗ with E(vb
∗) bounded for every b > 0. Further-

more, P (Bc) = O(D−ζb/2), where ζ = min(1/4, 1− η).

The set B mentioned in Lemma 1 is defined in the proof of Theorem 2.1 of Das et al. (2004),
and is the set where the existence of a solution of the likelihood equations ∂lP (θ)/∂θ = 0 can
be ensured.

Das et al. (2004), based on the representation (6), approximated the mean squared error
of the EBLUP of a mixed effect, were the neglected terms were o(D−1). However, if we follow
their approach for approximating the MSE of the empirical predictor τ̂E

k of a parameter τk, the
exponential function appearing in our parameter τk makes the order of the neglected terms in
the MSE to be slower; thus, a rate o(D−1) cannot be ensured. For this reason, a more exact
asymptotic representation than (6) is needed. Lemma 2 gives this more precise asymptotic
formula.
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Lemma 2 Let model (1)–(2) satisfy conditions (H2)–(H5). Then, for any η ∈ (0, 1), on the
same set B as in Lemma 1 and for large D, it holds that

θ̂ = θ0 + I−1s + I−1(H + I) I−1s + I−1d/2 + r, (7)

where |r| < D−3η/2v, for a random variable v with E(vb) bounded for every b > 0.

A sketch of the proof is given in the appendix. As a consequence of Lemma 2, the following
result provides an asymptotic representation for τ̂E

k −τ̂k. This result leads to the approximation
of the MCPE obtained in Section 5.

Lemma 3 Under assumptions (H1)–(H5), on the same set B as in Lemmas 1 and 2, and for
large D, it holds that

τ̂E
k − τ̂k = h′kI−1s + h′kI−1(H + I)I−1s + h′kI−1d/2 + s′I−1(∂2τ̂k/∂θ2)I−1s/2 + rk, (8)

where |rk| < D−3η/2vk , for a random variable vk with bounded first and second moments.

5 Mean crossed product error

Now let us consider two parameters τk = exp(µk), where µk = λ′kβ + m′
ku for k = 1, 2, and

their bias-corrected predictors τ̂k = exp(µ̂k + αk), where µ̂k is the BLUP of µk, k = 1, 2.
Proposition 1 gives the exact expression of the mean crossed product error of τ̂1 and τ̂2 under
the assumption that θ is known. The mean squared error of the predictor τ̂ of a parameter τ
is obtained by setting τ1 = τ2 = τ .

Let us define λ = λ1 + λ2, m = m1 + m2, α = α1 + α2 and b = b1 + b2, where

bk = V−1X(X′VX)−1λk + σ2
uPZmk, k = 1, 2. (9)

Proposition 1 The mean crossed product error of the predictors τ̂1 = exp(µ̂1 + α1) and τ̂2 =
exp(µ̂2 + α2) is given by

MCPE(τ̂1, τ̂2) = exp(λ′β)
{
exp(α + b′Vb/2) + exp(σ2

um
′m/2)

−exp
[
α1 +

(
b′1Vb1 + σ2

um
′
2m2 + 2σ2

um
′
2Z

′b1

)
/2
]

−exp
[
α2 +

(
b′2Vb2 + σ2

um
′
1m1 + 2σ2

um
′
1Z

′b2

)
/2
]}

. (10)

In the rest of this section regard the parameter θ as unknown. The following results
provide an approximation correct up to order o(D−1) for the MCPE of the empirical predictors
τ̂E
1 = exp(µ̂E

1 + α̂1) and τ̂E
2 = exp(µ̂E

2 + α̂2). The mentioned approximation is obtained by
analyzing each term in the decomposition

MCPE(τ̂E
1 , τ̂E

2 ) = MCPE(τ̂1, τ̂2) + E
[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)

]
+E

[
(τ̂E

1 − τ̂1)(τ̂2 − τ2)
]
+ E

[
(τ̂1 − τ1)(τ̂E

2 − τ̂2)
]
. (11)

The first term on the right-hand side is already given in (10). A second order approximation
for the second term is given in Theorems 1 and 2 below. Finally, Theorem 3 states that the
remaining terms in (11) are o(D−1). The proofs of these results appear in the appendix.

Theorem 1 Suppose that (H1)–(H5) hold. Then, the predictors τ̂k = exp(µ̂k + αk) and τ̂E
k =

exp(µ̂E
k + α̂k) of the parameter τk = exp(µk), k = 1, 2, satisfy

E
[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)

]
= E

[
(h′1I−1s)(h′2I−1s)

]
+ o(D−1). (12)
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Theorem 2 provides a simpler formula for practical calculation of the MCPE. This formula is
a second order approximation of the right-hand side of (12).

Theorem 2 Under (H1)–(H5), it holds

E
[
(h′1I−1s)(h′2I−1s)

]
= exp(α + λ′β + b′Vb/2)×[

tr
(

∂γ ′1
∂θ

V
∂γ2

∂θ

)
+
(
b′V

∂γ1

∂θ
+
(

∂α1

∂θ

)′)
I−1

(
∂γ ′2
∂θ

Vb +
∂α2

∂θ

)]
+ o(D−1).

Theorem 3 states that in the approximation of the MCPE, the last two terms in (11) can be
neglected.

Theorem 3 Under (H1)–(H5), it holds

E
[
(τ̂E

1 − τ̂1)(τ̂2 − τ2)
]

= o(D−1).

From the decomposition given in (11) and Theorems 1–3, we obtain the following formula of
the MCPE of the predictors τ̂E

1 and τ̂E
2 ,

MCPE(τ̂E
1 , τ̂E

2 ) = MCPE(τ̂1, τ̂2) + exp(α + λ′β + b′Vb/2)×[
tr
(

∂γ ′1
∂θ

V
∂γ2

∂θ

)
+
(
b′V

∂γ1

∂θ
+
(

∂α1

∂θ

)′)
I−1

(
∂γ ′2
∂θ

Vb +
∂α2

∂θ

)]
+ o(D−1). (13)

6 Estimation of the mean crossed product error

Estimation of (13) can be done with a bias of order o(D−1) by plugging ML estimators β̂E

and θ̂ instead of the unknown values β and θ except for the first term, MCPE(τ̂1, τ̂2), where a
bias appears due to the plug-in procedure. In this section we approximate this bias and, based
on this result, we propose a bias-corrected estimator for MCPE(τ̂1, τ̂2).

Let us denote g(β0,θ0) = MCPE(τ̂1, τ̂2). The following theorem provides an approximation
up to o(D−1) for the bias of the estimator g(β̂E , θ̂) of g(β0,θ0).

Theorem 4 Under (H1)-(H5), it holds

E[g(β̂E , θ̂)] = g(β0,θ0) +
5∑

j=1

Λj(θ0) + o(D−1),

where

Λ1(θ0) = (∂g/∂θ)′E(I−1s), Λ2(θ0) = (∂g/∂θ)′E
[
I−1(H + I)I−1

]
,

Λ3(θ0) = (∂g/∂θ)′E(I−1d)/2, Λ4(θ0) = E
[
sI−1

(
∂2g/∂θ2

)
I−1s

]
/2,

Λ5(θ0) = g(β0,θ0) λ′(XV−1X)−1λ.

Straightforward algebra yields the following formulas for the Λj(θ0):

Λ1(θ0) = (∂g/∂θ)′ I−1ν,

Λ2(θ0) = (∂g/∂θ)′ I−1col1≤i≤3

(
tr(ΦiI−1)

)
+ o(D−1),

Λ3(θ0) = (1/4) (∂g/∂θ)′ I−1col1≤i≤3

(
tr
[
(3Φi −Bi)I−1ΦI−1

])
+ o(D−1),

Λ4(θ0) = (1/4)tr
[(

∂2g/∂θ2
)
I−1ΦI−1

]
+ o(D−1).
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Here, ν = (ν1, ν2, ν3)′, Φ = (φij)i,j=1,2,3, Φi = (φijk)j,k=1,2,3, and Bi = (aijk)j,k=1,2,3, where

νj = tr[(P−V−1)∆j ], φij = tr(P∆iP∆j),
φijk = tr(P∆iP∆jP∆k), aijk = tr(V−1∆iV−1∆jV−1∆k).

From Theorem 4, an unbiased estimator of g(β0,θ0) up to o(D−1) terms is

g∗ = g(β̂E , θ̂)−
5∑

j=1

Λj(θ̂).

Appendix

In this appendix we outline the proofs of the results of Sections 4–6. Hereafter, the norm of
a vector v is denoted by |v| = (v′v)1/2, and for a matrix A, the norms ‖A‖ = λ

1/2
max(A′A)

and ‖A‖2 = tr1/2(A′A) are used. Further, let us denote ∆j = ∂V/∂θj , j = 1, 2, 3, and
δk = µ̂k + αk, so that τ̂k = exp(δk), k = 1, 2. Finally, for η ∈ (0, 1), let us introduce the
following neighborhood of θ0,

N(θ0) =
{

θ ∈ Θ : |θ − θ0| < D−η/2
}

.

PROOF OF LEMMA 2 Second-order Taylor expansions about θ0 of the functions ∂lP (θ)/∂θi,
i = 1, 2, 3, evaluated at θ = θ̂, lead to

0 = s + H(θ − θ0) + d̃/2 + r̃,

where d̃ = (d̃1, d̃2, d̃3)′ with d̃i = (θ̂ − θ0)′Di(θ̂ − θ0), and r̃ = (r̃1, r̃2, r̃3)′ with

r̃i =
1
6

3∑
j=1

3∑
k=1

3∑
`=1

∂4lP (θ∗)
∂θi∂θj∂θk∂θ`

(θ̂j − θ0j)(θ̂k − θ0k)(θ̂` − θ0`), i = 1, 2, 3.

Adding and subtracting I to H, multiplying by I−1 and solving for θ̂ we obtain

θ̂ = θ0 + I−1s + I−1(H + I)(θ̂ − θ0) + I−1d̃/2 + r1, (14)

where r1 = I−1 r̃. It is not difficult to prove that on B and for large D, |r1| < D−3η/2v1, where
E(vb

1) is bounded for b > 0. The proof of this result involves showing that

E

(
sup

N(θ0)

∣∣∣∣ 1
D

∂4lP (θ)
∂θi∂θj∂θk∂θ`

∣∣∣∣
)b

= O(1), b > 0.

This fact is shown in the proof of Theorem 3 of Baillo and Molina (2005).
Now let us replace (6) in the third and fourth terms on the right of (14). On the one hand,

I−1(H + I)(θ̂ − θ0) = I−1(H + I)I−1s + r2, (15)

where |r2| < D−1/2−ηv2 with E(vb
2) bounded, for b > 0. On the other hand,

I−1d̃ = d + r3 + r4, (16)

for d as defined in (5), and where |r3| < D−1/2−ηv3 and |r4| < D−2ηv4, where E(vb
3) and E(vb

4)
are bounded, for b > 0. The proof of the boundedness of these expectations involves checking
the condition

E

(∣∣∣∣ 1
D

∂3lP
∂θi∂θj∂θk

∣∣∣∣b
)

= O(1), b > 0.
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This is shown in the proof of Lemma 1 of Baillo and Molina (2005). Replacing (15) and (16)
in (14) and denoting r = r1 + r2 + (r3 + r4)/2, we obtain the result. 2

PROOF OF LEMMA 3 A second-order Taylor expansion of τ̂k(θ) around θ0, evaluated at
the point θ = θ̂, leads to

τ̂E
k − τ̂k = h′k(θ̂ − θ0) + (1/2)(θ̂ − θ0)

(
∂2τ̂k/∂θ2

)
(θ̂ − θ0) + rk1, (17)

where |rk1| < D−3η/2vk1 and the first and second moments of vk1 are bounded. Now let us
insert (7) into the first term on the right of (17), and (6) into the second term. This leads to

τ̂E
k − τ̂k = h′kI−1s + h′kI−1(H + I)I−1s +

1
2

h′kI−1d +
1
2

s′I−1 ∂2τ̂k

∂θ2
I−1s + rk1 + rk2 + rk3,

for rk2 = r′∗(∂
2τ̂k/∂θ2)I−1s and rk3 = r′∗(∂

2τ̂k/∂θ2)r∗. By Lemma 1, for large D and on B, it
holds that |rk2| < D−1/2−ηvk2 and |rk3| < D−2ηvk3, where both vk2 and vk3 have the first two
moments bounded, and further, the expectations E(vkivkj) for i 6= j are also bounded. Then
the result follows by calling rk = rk1 + rk2 + rk3. 2

PROOF OF PROPOSITION 1 The mean crossed product error of τ̂1 and τ̂2 is

MCPE(τ̂1, τ̂2) = E {[exp(µ̂1 + α1)− exp(µ1)] [exp(µ̂2 + α2)− exp(µ2)]}
= E [exp(µ̂1 + µ̂2 + α)] + E [exp(µ1 + µ2)]

−E [exp(µ̂1 + µ2 + α1)]− E [exp(µ1 + µ̂2 + α2)] .

The exponents involved can be written as linear combinations of multivariate normal vectors
as

µ1 + µ2 = λ′β + m′u;
µ̂1 + µ2 = λ′β + (b′1Z + m′

2)u + b′1e;
µ̂1 + µ̂2 = λ′β + b′v, for v = Zu + e ∼ Nn(0n,V). (18)

Then (10) follows by using the moment generating function of linear combinations of the
multidimensional normal variables u, e and v. 2

PROOF OF THEOREM 1 The proof is based on the following chain results:

A) For large D and on B, it holds

τ̂E
k − τ̂k = h′kI−1s + tk, k = 1, 2, (19)

where |tk| ≤ D−η wk and the first and second moments of the random variable wk are bounded.
B) E

[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)1B

]
= E

[
(h′1I−1s)(h′2I−1s)1B

]
+ o(D−1), where 1B denotes the

indicator function of the set B mentioned in Lemma 1.

C) E
[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)1Bc

]
= o(D−1).

D) E
[
(h′1I−1s)(h′2I−1s)1B

]
= E

[
(h′1I−1s)(h′2I−1s)

]
+ o(D−1).

The result then follows directly from the decomposition

E
[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)

]
= E

[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)1B

]
+ E

[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)1Bc

]
,

and using B), C) and D).

9



Now we detail the proofs of A)–D). Result A) is obtained by a first-order Taylor expansion
of the function τ̂E

k = τ̂k(θ̂) around θ̂ = θ0,

τ̂E
k − τ̂k = h′k(θ̂ − θ0) + tk, for tk = (1/2)(θ̂ − θ0)′

(
∂2τ̂k(θ∗)/∂θ2

)
(θ̂ − θ0), (20)

where θ∗ is on the line joining θ̂ and θ0. Using Lemma 1 and the formula of the second
derivative of τ̂k(θ) = exp(δk(θ)),

∂2τ̂k(θ)/∂θ2 = exp(δk(θ)
[
(∂δk(θ)/∂θ) (∂δk(θ)/∂θ)′ + ∂2δk(θ)/∂θ2

]
,

we obtain that |tk| ≤ D−η wk, for wk = wk1 + wk2, where

wk1 = (1/2) exp( sup
N(θ0)

δk(θ)) sup
N(θ0)

|∂δk(θ)/∂θ|2 ;

wk2 = (1/2) exp( sup
N(θ0)

δk(θ)) sup
N(θ0)

∥∥∂2δk(θ)/∂θ2
∥∥ .

It remains to prove that E(wk) and E(w2
k) are bounded. From the Hölder inequality,

E(wk1) ≤ (1/2) E1/2[exp(2 sup
N(θ0)

δk(θ))]E1/2( sup
N(θ0)

|∂δk(θ)/∂θ|4). (21)

We are going to show that both expectations on the right of the inequality above are bounded.
We start with the second one. It holds that

µ̂k(θ) = b′k(θ)y, where bk(θ) = V(θ)−1XQ(θ)λk + σ2
u P(θ)Zmk, k = 1, 2. (22)

Let bkj(θ) be the j-th element of bk(θ). After some algebra, it can be seen that

sup
N(θ0)

|bk(θ)| = O(1);
n∑

j=1

sup
N(θ0)

‖∂bkj(θ)/∂θ‖ = O(1). (23)

Then, using the Hölder inequality, (23) and taking into account and that the vector y is
normally distributed, we obtain

E

(
sup

N(θ0)
|∂µ̂k(θ)/∂θ|4

)
≤
(

max
1≤j≤n

E|yj |4
) n∑

j=1

sup
N(θ0)

‖∂bkj(θ)/∂θ‖ = O(1). (24)

Furthermore, it holds

sup
N(θ0)

|αk(θ)| = O(1); sup
N(θ0)

|∂αk(θ)/∂θ| = O(1). (25)

From the Minkowski inequality, (24) and (25), we obtain

E

(
sup

N(θ0)

∣∣∣∣∂δk(θ)
∂θ

∣∣∣∣4
)
≤

[
E1/4

(
sup

N(θ0)

∣∣∣∣∂µ̂k(θ)
∂θ

∣∣∣∣4
)

+ E1/4

(
sup

N(θ0)

∣∣∣∣∂αk(θ)
∂θ

∣∣∣∣4
)]4

= O(1). (26)

Concerning the first expectation on the right of (21), by the equality δk(θ) = αk(θ) + µ̂k(θ),
(22) and using the moment generating function of a multivariate normal distribution, we obtain

E[exp(2 sup
N(θ0)

δk(θ))] = exp[2λ′kβ + 2( sup
N(θ0)

αk(θ)) + 2( sup
N(θ0)

bk(θ))′V( sup
N(θ0)

bk(θ))].
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On the one hand, (H1) states that |λk| = O(1), and on the other hand, (H2) implies that
‖V‖ = O(1). These results, together with the left counterparts of (23) and (25), imply that

E[exp(2 sup
N(θ0)

δk(θ))] = O(1), k = 1, 2. (27)

By (21), (26) and (27), we have that E(wk1) = O(1). In a similar fashion it can be seen that
the quantities E(wk2), E(w2

k1), E(w2
k2) and E(wk1 wk2) are also bounded. These facts imply

that the first two moments of wk = wk1 + wk2 are bounded, k = 1, 2.
Finally, by replacing (6) in (20) we obtain

τ̂E
k − τ̂k = h′kI−1s + t∗k, where t∗k = h′kr∗ + tk, k = 1, 2. (28)

Here the error term satisfies |t∗k| ≤ D−η w∗k, where w∗k = |hk| v∗ + wk and it is not difficult to
see that E(w∗k) = O(1) and E(w∗2k ) = O(1).

Now we prove B). By (28), we can write

E
[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2)1B

]
= E

[
(h′1I−1s)(h′2I−1s)1B

]
+E

[
(h′1I−1s) t∗21B

]
+ E

[
(h′2I−1s) t∗11B

]
+ E(t∗1 t∗21B).

We are going to show that for any η ∈ (0, 1),

E
∣∣(h′1I−1s) t∗2 1B

∣∣ = O(D−1/2−η) and E|t∗1 t∗2 1B| = O(D−2η). (29)

The second part of (29) follows easily from the definition of t∗k given in (28) and Lemma 1,
using the Hölder inequality. As to the first part, since h1 = exp(δ1)(∂δ1/∂θ), by the Hölder
inequality,

E
∣∣(h′1I−1s) t∗2 1B

∣∣ ≤ E1/4 [exp(4δ1)] E1/4
∣∣(∂δ1/∂θ)′ I−1s

∣∣4 E1/2[(t∗2)
21B].

The first expectation on the right-hand side of the inequality above is bounded due to the
same reasons as (27). Further, we have seen that

E1/2[(t∗2)
2 1B] ≤ D−η E1/2(w∗k)

2 = O(D−η). (30)

Using the Hölder inequality again, we have

E1/4
∣∣(∂δ1/∂θ)′ I−1s

∣∣4 ≤ E1/8 |∂δ1/∂θ|8 E1/8|I−1s|8. (31)

Proceeding as in (26), it can be seen that E1/8|∂δ1/∂θ|8 = O(1). Furthermore it is not difficult
to prove that E|D−1/2s|8 = O(1). Since (H5) implies that ‖I−1‖ = O(D−1), then

E1/8|I−1s|8 ≤ D1/2 ‖I−1‖E1/8|D−1/2s|8 = O(D−1/2).

Therefore,
E1/4

∣∣(∂δ1/∂θ)′ I−1s
∣∣4 = O(D−1/2). (32)

Thus, (30) and (32) lead to the first statement of (29); analogously, it holds E|(h′2I−1s) t∗1 1B| =
O(D−1/2−η). The result then follows by taking η ∈ (1/2, 1).

Concerning C), by the Hölder inequality, (22), (23), (25) and Lemma 1 with η ∈ (1/2, 1),
we can write

E
[
(τ̂E

1 − τ̂1)(τ̂E
2 − τ̂2) 1Bc

]
≤ E

[
exp

(
α̂ + µ̂E

1 + µ̂E
2

)
1Bc

]
+ E [exp (α + µ̂1 + µ̂2) 1Bc ]

≤ 2 exp( sup
N(θ0)

α(θ))E1/2[exp(2 sup
N(θ0)

b′(θ)y)]P 1/2(Bc) = O(D−b/16).
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and this is o(D−1) for b large enough (b > 16).
Finally, D) yields from the equality

E
[
(h′1I−1s)(h′2I−1s) 1B

]
= E

[
(h′1I−1s− h′1I−1s 1Bc)(h′2I−1s− h′2I−1s 1Bc)

]
= E

[
(h′1I−1s)(h′2I−1s)

]
− E

[
(h′1I−1s)(h′2I−1s) 1Bc

]
,

and showing that the last term is o(D−1). Indeed, by the Hölder inequality,

E
[
(h′1I−1s)(h′2I−1s) 1Bc

]
≤ E1/2 [exp(2δ1 + 2δ2)]×

E1/4
∣∣(∂δ1/∂θ)′ I−1s 1Bc

∣∣4 E1/4
∣∣(∂δ2/∂θ)′ I−1s 1Bc

∣∣4
The first expectation on the right-hand side of the inequality is bounded by the same arguments
used for (27). Further, applying again the Hölder inequality,

E1/4
∣∣(∂δk/∂θ)′ I−1s 1Bc

∣∣4 ≤ E1/8
∣∣(∂δk/∂θ)′ I−1s

∣∣8 P 1/8(Bc).

But proceeding as in (31), we obtain E1/8
∣∣(∂δk/∂θ)′ I−1s

∣∣8 = O(D−1/2), and taking η > 1/4
in Lemma 1, we get P 1/8(Bc) = O(D−b/64). Therefore, for any b > 0 and for η > 1/4, we have

E
[
(h′1I−1s)(h′2I−1s) 1Bc

]
=
[
O(D−1/2−b/64)

]2
= o(D−1).

2

The following two results are technical lemmas needed for the proof of Theorem 2.

Lemma 4 Let Ai, i = 1, 2, 3 be n× n nonstochastic symmetric matrices and v ∼ Nn(0n,Σ),
where Σ is positive definite. Then,

(i) E [v(v′A1v)v′] = tr(A1Σ)Σ + 2ΣA1Σ;

(ii) E {v[v′A1v − E(v′A1v)]v′} = 2ΣA1Σ;

(iii) E

{
2∏

i=1

[v′Aiv − E(v′Aiv)]

}
= 2tr(A1ΣA2Σ)tr(ΣA1Σ)tr(A2Σ);

(iv) E

{
v

2∏
i=1

[v′Aiv − E(v′Aiv)]v′
}

= 2tr(A1ΣA2Σ)Σ + 4ΣA1ΣA2Σ + 4ΣA2ΣA1Σ;

(v) E

{
3∏

i=1

[v′Aiv − E(v′Aiv)]

}
= 4tr(A1ΣA2ΣA3Σ) + 4tr(A1ΣA3ΣA2Σ);

(vi) E

{
v

3∏
i=1

[v′Aiv − E(v′Aiv)]v′
}

= 4tr(A1ΣA2ΣA3Σ)Σ + 4tr(A1ΣA3ΣA2Σ)Σ

+4tr(A1ΣA2Σ)ΣA3Σ + 4tr(A1ΣA3Σ)ΣA2Σ + 4tr(A2ΣA3Σ)ΣA1Σ
+2tr(A2Σ)ΣA1ΣA3Σ + 2tr(A3Σ)ΣA1ΣA2Σ− 2tr(A2Σ)ΣA3ΣA1Σ
−2tr(A3Σ)ΣA2ΣA1Σ + 12ΣA1ΣA2ΣA3Σ + 8ΣA3ΣA1ΣA2Σ + 12ΣA1ΣA3ΣA2Σ
+8ΣA2ΣA1ΣA3Σ + 4ΣA2ΣA3ΣA1Σ + 4ΣA3ΣA2ΣA1Σ.

PROOF OF LEMMA 4 (i) appears in Lemma A.1 of Prasad and Rao (1990), and (iii) is
a direct consequence of the same lemma. (ii) is easily obtained from (i). (iv) follows by
straightforward algebra and application of (i). Finally, (v) and (vi) are obtained by application
of the recurrence formula of Srivastava and Tiwari (1976) and straightforward algebra. 2

In the following lemma, we use the notation Σb = Σ + Σbb′Σ.
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Lemma 5 Let A1 and A2 be two n× n nonstochastic symmetric matrices, b and c two non-
stochastic vectors of size n and v ∼ Nn(0n,Σ). Then,

(i) E [exp(b′v)v] = exp(b′Σb/2)Σb;

(ii) E [exp(b′v)vv′] = exp(b′Σb/2)Σb;

(iii) E [exp(b′v)vv′(c′v)] = exp(b′Σb/2)(Σbc′Σ + Σcb′Σ);

(iv) E {exp(b′v) [v′A1v − E(v′A1v)]} = exp(b′Σb/2)b′VA1Σb;

(v) E {exp(b′v) [v′A1v − E(v′A1v)]v′} = exp(b′Σb/2) [2b′ΣA1Σ + (b′ΣA1Σb)b′Σ];

(vi) E {exp(b′v)v[v′A1v − E(v′A1v)]v′} = exp(b′Σb/2)×
[2ΣbA1Σ + (b′ΣA1Σb)Σb + 2ΣA1Σbb′Σ];

(vii) E{exp(b′v)v[v′A1v − E(v′A1v)]v′(c′v)} = exp(b′Σb/2)×
[2(b′ΣA1Σc)Σb) + 4ΣA1Σbc′Σ + 2Σbc′ΣAiΣ + 2ΣA1Σcb′Σ
+(b′ΣAiΣb)Σbc′Σ + (b′ΣAiΣb)Σcb′Σ + 2(b′Σc)ΣbA1Σ
+(b′ΣA1Σb)(b′Σc)Σb + 2(b′Σc)ΣA1Σbb′Σ];

(viii) E

{
exp(b′v)

2∏
i=1

[v′Aiv − E(v′Aiv)]

}
= exp(b′Σb/2)×

[2tr(A1ΣA2Σ) + 4b′ΣA1ΣA2Σb + 2(b′ΣA1Σb)(b′ΣA2Σb)];

(ix) E

{
exp(b′v)

2∏
i=1

[v′Aiv − E(v′Aiv)]v′
}

= exp(b′Σb/2)×

[2tr(A1ΣA2Σ)b′Σ + 4(b′ΣA1ΣA2Σb)b′Σ + 2(b′ΣA1Σb)(b′ΣA2Σb)b′Σ
+4b′ΣA1ΣA2Σ + 4b′ΣA2ΣA1Σ + 2(b′ΣA1Σb)b′ΣA2Σ
+2(b′ΣA2Σb)b′ΣA1Σ];

(x) E

{
exp(b′v)v

2∏
i=1

[v′Aiv − E(v′Aiv)]v′
}

= exp(b′Σb/2)×

[2tr(A1ΣA2Σ)Σb + 2(b′ΣA1Σb)ΣbA2Σ + 2(b′ΣA2Σb)ΣbA1Σ
+(b′ΣA1Σb)(b′ΣA2Σb)Σb + 4(b′ΣA1ΣA2Σb)Σb + 4ΣbA1ΣA2Σ
+4ΣbA2ΣA1Σ + 8ΣA1Σbb′ΣA2Σ + 4ΣA2ΣA1Σbb′Σ + 4ΣA1ΣA2Σbb′Σ
+2(b′ΣA1Σb)ΣA2Σbb′Σ + 2(b′ΣA2Σb)ΣA1Σbb′Σ].

PROOF OF LEMMA 5 (i) Observe that the expectation can be written as

E
[
exp(b′v)v

]
= exp(b′Σb/2)

∫
v (2π)−n/2|Σ|−n/2exp

{
−1

2
(v −Σb)′Σ−1(v −Σb)

}
dv,

where the integral is the expectation of a random vector z ∼ N(Σb,Σ); that is,

E
[
exp(b′v)v

]
= exp(b′Σb/2)E(z) = exp(b′Σb)Σb.

(ii) is obtained similarly as (i). As to (iii), rearranging the integral as in (i) and making the
change of variable w = v −Σb, we obtain

E{exp(b′v)vv′(c′v)} = exp(b′Σb/2)E
[
(w + Σb)(w + Σb)′c′(w + Σb)

]
,

for w ∼ N(0n,Σ). Then the result follows by straightforward algebra, and taking into account
that the expectations where w appears an odd number of times are zero. Results (iv)–(x) are
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obtained using similar arguments as in (iii) and application of Lemma 4. 2

PROOF OF THEOREM 2 Since hk = exp(δk) (∂δk/∂θ), k = 1, 2, we can write

E
[
(h′1I−1s)(h′2I−1s)

]
= E

{
exp(δ1 + δ2)

[
(∂δ1/∂θ)′ I−1s

] [
(∂δ2/∂θ)′ I−1s

]}
(33)

On the one hand, the derivatives can be written as

∂δk/∂θ = dk + Dkv, for dk = ∂αk/∂θ and Dk = Fk + ∂γ ′k/∂θ,

where ∂γ ′k/∂θ = col1≤j≤3(∂γ ′k/∂θj) and Fk = col1≤j≤3(fkj) with

fkj = −P∆jV−1XQ(λk −X′γk)−V−1XQX′ (∂γ ′k/∂θ
)
.

On the other hand, the score vector s is equal to

s = (q− Eq) /2 + ν, (34)

where q = (q1, q2, q3)′ and ν = (ν1, ν2, ν3)′, with

qj = v′P∆jPv and νj =
[
tr(P∆j)− tr(V−1∆j)

]
, j = 1, 2, 3.

Let us denote ωk = I−1∂δk/∂θ = gk + Ckv, where gk = I−1dk = (gk1, gk2, gk3)′ and Ck =
I−1Dk = col1≤j≤3(c′kj), k = 1, 2. With this notation and (34),

(∂δk/∂θ)′ I−1s = ω′k(q− Eq)/2 + ω′kν, k = 1, 2. (35)

Further, by (18), for v = Zu+ e it holds that δ1 + δ2 = α + λ′β +b′v. Inserting this and (35)
into (33) we get

E
[
(h′1I−1s)(h′2I−1s)

]
=

1
4

E
[
exp(α + λ′β + b′v) ω′1(q− Eq) ω′2(q− Eq)

]
+

1
2

E
[
exp(α + λ′β + b′v) ω′1(q− Eq) ω′2ν

]
+

1
2

E
[
exp(α + λ′β + b′v) ω′2(q− Eq) ω′1ν

]
+E

[
exp(α + λ′β + b′v) ω′1ν ω′2ν

]
= B1 + B2 + B3 + B4. (36)

We start calculating B1. For this, first let us denote Aj = P∆jP, so that qj = v′Ajv,
j = 1, 2, 3. Using the expressions ωk = gk + Ckv, k = 1, 2, we can write

B1 = (1/4)exp(α + λ′β)
3∑

i=1

3∑
j=1

{
c′1iE

[
exp(b′v)v(qi − Eqi)(qj − Eqj)v′

]
c2j

+g1iE
[
exp(b′v)(qi − Eqi)(qj − Eqj)v′

]
c2j + c′1iE

[
exp(b′v)v(qi − Eqi)(qj − Eqj)

]
g2j

+g1iE
[
exp(b′v)(qi − Eqi)(qj − Eqj)

]
g2j

}
= exp(α + λ′β)(B11 + B12 + B13 + B14).

Applying Lemma 5 (x) we obtain

B11 = (1/4) exp(b′Vb/2)×
3∑

i=1

3∑
j=1

[
2 tr(AiVAjV) c′1iVc2j + 2 tr(AiVAjV) c′1iVbb′Vc2j

+2 (b′VAiVb) c′1iVbAjVc2j + 2 (b′VAjVb) c′1iVbAiVc2j

+(b′VAiVb)(b′VAjVb) c′1iVbc2j + 4 (b′VAiVAjVb) c′1iVbc2j

+4 c′1iVbAiVAjVc2j + 4 c′1iVbAjVAiVc2j

+8 c′1iVAiVbb′VAjVc2j + 4 c′1iVAjVAiVbb′Vc2j

+4 c′1iVAiVAjVbb′Vc2j + 2 (b′VAiVb) c′1iVAjVbb′Vc2j

+ 2 (b′VAjVb) c′1iVAiVbb′Vc2j

]
. (37)

14



We study each term in (37). The first one is equal to

3∑
i=1

3∑
j=1

2 tr(AiVAjV) c′1iVc2j = tr [Cov(C1v, C2v)V ar(q)] . (38)

It holds that Cov(C1v, C2v) = I−1D1VD′
2 I−1, and it is not difficult to see that V ar(q) =

4I +K, where K is a matrix whose element (i, j) is

kij = 2
[
tr(V−1∆iV−1∆j)− tr(P∆iP∆j)

]
= O(1), i, j = 1, 2, 3.

Using these results and the facts that ‖I−1‖ = O(D−1), ‖Dk‖ = O(1), k = 1, 2 and ‖K‖ =
O(1), we obtain

(1/4) tr [Cov(C1v, C2v)V ar(q)] = tr(I−1D1VD′
2) + O(D−1),

where

tr(I−1D1VD′
2) = tr

(
I−1 ∂γ ′1

∂θ
V

∂γ2

∂θ

)
+ tr

(
I−1F1VF ′

2

)
+ tr

(
I−1F1V

∂γ2

∂θ

)
+ tr

(
I−1 ∂γ ′1

∂θ
VF ′

2

)
+ O(D−2). (39)

Assumptions (H2) and (H5) imply respectively that ‖V‖ = O(1) and ‖I−1‖ = O(D−1).
Further, using (H1)–(H4), we obtain ‖Fk‖ = O(D−1/2) and ‖∂γk/∂θ‖ = O(1), k = 1, 2.
Therefore,

tr
(
I−1F1VF ′

2

)
≤ 3 ‖I−1F1VF ′

2‖ ≤ 3 ‖V‖‖F1‖‖F ′
2‖‖I−1‖ = O(D−2); (40)

tr
[
I−1F1V (∂γ2/∂θ)

]
≤ 3 ‖I−1‖‖F1‖‖V‖ ‖∂γ2/∂θ‖ = O(D−3/2), (41)

and tr
[
I−1 (∂γ ′1/∂θ)VF ′

2

]
= O(D−3/2) analogously to (41). From (39)–(41) we obtain

(1/4)tr [Cov(C1v, C2v)V ar(q)] = tr
(
I−1 ∂γ ′1

∂θ
V

∂γ2

∂θ

)
+ o(D−1). (42)

The second term in the sum of equation (37) is equal to

3∑
i=1

3∑
j=1

2 tr(AiVAjV) c′1iVbb′Vc2j = Cov(C1v,b′v)′V ar(q) Cov(C2v,b′v) (43)

where Cov(Ckv,b′v) = I−1DkVb, k = 1, 2, and V ar(q) = 4 I + K. Since |b| = O(1), it can
be easily seen that

(1/4)Cov(C1v,b′v)′V ar(q) Cov(C2v,b′v) = b′VD′
1I−1D2Vb + o(D−1).

Now inserting Dk = Fk + ∂γ ′k/∂θ, k = 1, 2, we get

b′VD′
1I−1D2Vb = b′V

∂γ1

∂θ
I−1 ∂γ ′2

∂θ
Vb + b′VF ′

1I−1F2Vb

+b′VF ′
1I−1 ∂γ ′2

∂θ
Vb + b′V

∂γ1

∂θ
I−1F2Vb, (44)

where
b′VF ′

1I−1F2Vb ≤ 3 ‖I−1‖|b′V|2‖F1‖‖F2‖ = O(D−2).
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In a similar way it can be proved that the third and fourth terms on the right of (44) are
o(D−1). Therefore,

(1/4)Cov(C1v,b′v)′V ar(q) Cov(C2v,b′v) = b′V
∂γ1

∂θ
I−1 ∂γ ′2

∂θ
Vb + o(D−1). (45)

Since |b| = O(1), ‖V‖ = O(1), ‖Ai‖ = O(1) and |c1i| = O(D−1), i = 1, 2, 3, all remaining
terms on the right of (37) are O(D−2). Further, we know that exp(b′Vb/2) = O(1). Therefore,
from (38), (42), (43) and (45) we obtain

B11 = exp(b′Vb/2)
[
tr
(
I−1 ∂γ ′1

∂θ
V

∂γ2

∂θ

)
+ b′V

∂γ1

∂θ
I−1 ∂γ ′2

∂θ
Vb
]

+ o(D−1). (46)

As to B12, applying Lemma 5 (ix) and using the facts that |b| = O(1), ‖V‖ = O(1) and
‖Ai‖ = O(1), i = 1, 2, 3, we obtain

B12 = (1/4) exp(b′Vb/2)
3∑

i=1

3∑
j=1

g1i 2tr(AiVAjV)b′Vc2j + O(D−2)

= (1/4) exp(b′Vb/2) g1V ar(q)Cov(C2v,b′v) + O(D−2).

Now inserting V ar(q) = 4I + K, D2 = F2 + ∂γ ′2/∂θ and g1 = I−1∂α1/∂θ, and taking into
account that ‖I−1‖ = O(D−1), |g1| = O(D−1) and ‖F2‖ = O(D−1/2), and that the rest of the
matrices and vectors involved have bounded norm, then

B12 = exp(b′Vb/2) (∂α1/∂θ)′ I−1
(
∂γ ′2/∂θ

)
Vb + O(D−3/2). (47)

Similarly, we obtain

B13 = exp(b′Vb/2) (∂γ1/∂θ) I−1 (∂α2/∂θ)Vb + O(D−3/2). (48)

Finally, B14 is obtained by application of Lemma 5 (viii),

B14 = exp(b′Vb/2)
3∑

i=1

3∑
j=1

g1ig2j 2tr(AiVAjV) + O(D−2)

= exp(b′Vb/2)g1V ar(q)g2 + O(D−2)
= exp(b′Vb/2) (∂α1/∂θ)′ I−1 (∂α2/∂θ) + O(D−2). (49)

From results (46)–(49), we obtain

B1 = exp(α + λ′β + b′Vb/2)×[
tr
(

∂γ ′1
∂θ

V
∂γ2

∂θ

)
+
(
b′V

∂γ1

∂θ
+
(

∂α1

∂θ

)′)
I−1

(
∂γ ′2
∂θ

Vb +
∂α2

∂θ

)]
+ o(D−1). (50)

Concerning B2, using ωk = gk + Ckv, k = 1, 2, we get

B2 = (1/2) exp(α + λ′β)
3∑

i=1

3∑
j=1

νj

{
c′1i E

[
eb′vv(qi − Eqi)v′

]
c2j

+g1ic′2jE
[
eb′vv(qi − Eqi)

]
+ g2jE

[
eb′v(qi − Eqi)v′

]
c1i + g1ig2jE

[
eb′v(qi − Eqi)

]}
= exp(α + λ′β)(B21 + B22 + B23 + B24).
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By applying Lemma 5 (vi), we obtain

B21 = (1/2) exp(b′Vb/2)
3∑

i=1

3∑
j=1

νj

[
c′1iVAiVc2j + (b′VAiVb) c′1iVbc2j

+ 2c′1iVbb′VAiVc2j + 2c′1iVA′iVbb′Vc2j

]
. (51)

By the facts that |c1i| = O(D−1) and |νi| = O(1), i = 1, 2, 3, all terms involved in this sum are
O(D−2). Similarly, after using Lemma 5 (iv) and (v) we obtain that all B22, B23 and B24 are
also O(D−2).

The proof that B3 = O(D−2) is analogous to B2. Finally, using Lemma 5 (i) and (ii) we
get that B4 = O(D−2). We have seen that B2–B4 are all O(D−2). Then, the result follows
from (50). 2

The following lemma is required in the proof of Theorem 3.

Lemma 6 Let f(v) be a function of v = Z + e such that v is the only stochastic element in
f(v). Then under assumptions (H1)–(H5), for the vector ` = V−1X(X′V−1X)−1(λ2 −X′γ2)
it holds

E [f(v)(τ̂2 − τ2)] = exp(α2 + λ2β)
{
E
[
exp(γ ′2v)(`′v)f(v)

]
+(1/2)E

[
exp(γ ′2v)(`′v)2f(v)

]}
+ o(D−1),

PROOF OF LEMMA 6 Let us define the random variable ξ2 = γ ′2v − m′
2u. Then ξ2 ∼

N(0, 2α2) and is independent of v. By symmetry, −ξ2 has the same distribution, and therefore,
the following relation holds

E [1− exp(−ξ2 − α2)] = 0. (52)

Further, from the definition of β̂ and û in (3), it follows that µ̂2 = µ2 + ξ2 + `′v. This last
relation allows us to write

τ̂2 − τ2 = exp(µ̂2 + α2)− exp(µ2)
= exp(α2 + λ2β + γ ′2v)

[
exp(`′v)− exp(−ξ2 − α2)

]
. (53)

Now let us use Taylor formula for exp(`′v),

exp(`′v) = 1 + `′v + (`′v)2/2 + ε. (54)

Here, ε = x3/6, where x satisfies |x| < |`′v|. Since |`| = O(D−1/2), then

E(ε2) ≤ (1/36) |`|6 E|v|6 = O(D−3).

Substituting (54) in (53) and taking into account the independence between ξ2 and v, we
obtain

E [f(v)(τ̂2 − τ2)] = exp(α2 + λ2β)
{
E
[
exp(γ ′2v)f(v)

]
E [1− exp(−ξ2 − α2)]

+E
[
exp(γ ′2v)(`′v)f(v)

]
+ (1/2)E

[
exp(γ ′2v)(`′v)2f(v)

]}
+ o(D−1),

and finally the relation (52) leads to the statement. 2

PROOF OF THEOREM 3 By the asymptotic representation (8) and the inequality

E [r1(τ̂2 − τ2)] ≤ E1/2(r2
1)E

1/2
[
(τ̂2 − τ2)2

]
≤ D−3η/2 E(v2

k) [MSE(τ̂2)]
1/2 = O(D−3η/2),
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taking η ∈ (2/3, 1), we get

E
[
(τ̂E

1 − τ̂1)(τ̂2 − τ2)
]

= E
[
h′1I−1s (τ̂2 − τ2)

]
+ E

[
h′1I−1(H + I)I−1s (τ̂2 − τ2)

]
+(1/2)E

[
h′kI−1d (τ̂2 − τ2)

]
+ (1/2)E

[
s′I−1 ∂2τ̂k

∂θ2
I−1s (τ̂2 − τ2)

]
+ o(D−1). (55)

We are going to prove that all terms on the right-hand side of (55) are also o(D−1). As to the
first one, since h1 = exp(δ1)(∂δ1/∂θ) and δ1 = α1 + λ1β + b′1v, then

E
[
h′1I−1s (τ̂2 − τ2)

]
= exp(α1 + λ′1β)

[
exp(b′1v) (∂δ1/∂θ)′ I−1s (τ̂2 − τ2)

]
.

Observe that (∂δ1/∂θ)′ I−1s is a function of v, so that Lemma 6 can be applied. By this
lemma,

E
[
h′1I−1s (τ̂2 − τ2)

]
= exp(α + λ′β)

{
E
[
exp(κ′v)(`′v) (∂δ1/∂θ)′ I−1s

]
+E

[
exp(κ′v)(`′v)2 (∂δ1/∂θ)′ I−1s

]}
, (56)

where κ = b1 + γ2. It remains to show that both expectations on the right are o(D−1). Using
the relations s = (q− Eq)/2 + ν and ω1 = I−1 (∂δ1/∂θ) = g1 + C1v, we obtain

E
[
exp(κ′v)(`′v) (∂δ1/∂θ)′ I−1s

]
=

1
2

3∑
i=1

g1i `
′E
[
exp(κ′v)v(qi − Eqi)

]
+

1
2

3∑
i=1

`′E
[
exp(κ′v)v(qi − Eqi)v′

]
c1i + `′E

[
exp(κ′v)v

]
g′1ν + `′E

[
exp(κ′v)vv′

]
c′1iν.

Then Lemma 5 (i), (ii), (v) and (vi), and the facts that |g1i| = O(D−1) and |`| = O(D−1/2)
imply that the first expectation on the right of (56) is O(D−3/2). Similarly, after straightfor-
ward algebra and the use of Lemma 5 we obtain that the second expectation on the right of
(56) is O(D−2).

Now we study the second term on the right of (55). As above, by Lemma 6, it suffices to
prove that

E
[
exp(κ′v)(`′v)j h′1I−1(H + I)I−1s

]
= o(D−1), j = 1, 2. (57)

For this, let us denote by Hij and Iij respectively the elements (i, j) of the matrices H and I.
Observe that

Hij = tr(V−1∆iV−1∆j)/2 + v′P∆iP∆jPv,

and then, for Aij = P∆iP∆jP, it holds

Hij + Iij = −
[
v′Aijv − E(v′Aijv)

]
.

Then, the expectation in (57) with j = 1 can be written as

E
[
exp(κ′v)(`′v)h′1I−1(H + I)I−1s

]
=

3∑
i=1

3∑
j=1

3∑
k=1

(I−1)jk ×{
(1/2) g1iE

[
exp(κ′v)

(
v′Aijv − E(v′Aijv)

)
(qk − Eqk)v′

]
`

+g1iνkE
[
exp(κ′v)

(
v′Aijv − E(v′Aijv)

)
v′
]
`

+(1/2) c′1iE
[
exp(κ′v)v

(
v′Aijv − E(v′Aijv)

)
(qk − Eqk)v′

]
`

+ νkc′1iE
[
exp(κ′v)v

(
v′Aijv − E(v′Aijv)

)
v′
]
`
}

,
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where (I−1)jk denotes the element (j, k) of I−1. Then Lemma 5 (v), (vi), (ix) and (x), and
the facts ‖Aij‖ = O(1), |νk| = O(1), |(I−1)ij | = O(D−1), |c1i| = O(D−1) and |`| = O(D−1/2),
for i, j, k = 1, 2, 3, imply (57) with j = 1. The result for j = 2 can be proven similarly
after straightforward but tedious algebra. Using similar arguments it can be seen that the
remaining two terms in (55) are also o(D−1). For the third term on the right of (55), just
remind that d = (d1, d2, d3)′, where di = s′I−1DiI−1s, for Di = ∂H/∂θi, i = 1, 2, 3. Further,
note that the element (j, k) of matrix Di can be written as a linear combination of v; concretely,
Dijk = aijk + v′Aijkv, where

aijk = −tr(V−1∆iV−1∆jV−1∆k);
Aijk = P∆kP∆jP∆iP + P∆jP∆kP∆iP + P∆jP∆iP∆kP.

Finally, concerning the last term in (55), just observe that

∂2τ̂1/∂θ2 = exp(α1 + λ′1β + b′1v)
[
(∂δ1/∂θ) (∂δ1/∂θ)′ + ∂2δ1/∂θ2

]
,

and that the elements of the first and second order derivative of δ1 are also linear functions of
v; more concretely,

∂δ1/∂θi = ∂α1/∂θi + (∂b1/∂θi)
′ v;

∂2δ1/∂θi∂θj = ∂2α1/∂θi∂θj +
(
∂2b1/∂θi∂θj

)′ v,

for i, j = 1, 2, 3. 2

PROOF OF THEOREM 4 A third order Taylor expansion of g(β,θ) around (β0,θ0) evaluated
at (β,θ) = (β̂E , θ̂) yields

g(β̂E , θ̂) = g(β0,θ0) +
(

∂g

∂θ

)′
(θ̂E − θ0) +

(
∂g

∂β

)′
(β̂E − β0) +

1
2

(θ̂ − θ0)′
∂2g

∂θ2
(θ̂ − θ0)

+
1
2

(β̂E − β0)′
∂2g

∂β2
(β̂E − β0) +

1
2

(β̂E − β0)′
∂2g

∂β∂θ′
(θ̂ − θ0) + rg,

where, using Lemma 1, it can be seen that E(rg) = o(D−1). Now from Lemma 2, the following
relations hold

E
[
(∂g/∂θ)′ (θ̂ − θ0)

]
= (∂g/∂θ)′

{
E(I−1s) + E

[
I−1(H + I)I−1s

]
+(1/2) E(I−1d)

}
+ o(D−1); (58)

E
[
(θ̂ − θ0)′

(
∂2g/∂θ2

)
(θ̂ − θ0)

]
= E

[
s′I−1

(
∂2g/∂θ2

)
I−1s

]
+ o(D−1). (59)

We are going to show that

E
[
(∂g/∂β)′ (β̂ − β0)

]
= o(D−1). (60)

For this, observe that

(∂g/∂β)′ (β̂E − β0) = g(β0,θ0) λ′(β̂E − β0), (61)

where β̂E = β̂(θ̂). Let us denote f(θ) = λ′(β̂(θ) − β0) = λ′Q(θ)X′V(θ)−1v, and perform a
second order Taylor expansion of f(θ) around θ0. At the point θ = θ̂, the expansion is

f(θ̂) = f(θ0) + (∂f/∂θ)′ (θ̂ − θ0) + rf , (62)
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where rf = (θ̂ − θ0)′
(
∂2f(θ∗)/∂θ2

)
(θ̂ − θ0). By the Hölder inequality,

E(rf ) ≤ E1/2

(
sup

N(θ0)

∥∥∂2f(θ)/∂θ
∥∥)2

E1/2|θ̂ − θ0|4.

It can be seen that the first expectation on the right of this inequality is bounded. Furthermore,
from the Minkowski inequality and Lemma 1 with η > 1/2, it follows that E1/2|θ̂ − θ0|4 =
o(D−1), so that E(rf ) = o(D−1). Then if we replace f(θ̂) = λ′(β̂E − β0) by (62) in (61) and
take expectation, we obtain

E
[
(∂g/∂β)′ (β̂E − β0)

]
= g(β0,θ0) E

[
(∂f/∂θ)′ (θ̂ − θ0)

]
+ o(D−1),

since E[f(θ0)] = 0. But inserting again θ̂ − θ0 = I−1s + r∗, we obtain

E
[
(∂f/∂θ)′ (θ̂ − θ0)

]
= E

[
(∂f/∂θ)′ I−1s

]
+ E

[
(∂f/∂θ)′ r∗

]
,

where, by the Hölder inequality and Lemma 1, since E1/2 |∂f/∂θ|2 = O(D−1),

E
[
(∂f/∂θ)′ r∗

]
≤ E1/2 |∂f/∂θ|2 E1/2(r2

∗) = O(D−1/2−η).

However,

E
[
(∂f/∂θ)′ I−1s

]
=

3∑
i=1

3∑
j=1

(I−1)ij λ′QX′V−1∆iPE(vsj) = 0.

Therefore, (60) holds for η > 1/2. Following similar arguments, it is easy to see that

E

[
(β̂E − β0)′

∂2g

∂β2
(β̂E − β0)

]
= g(β0,θ0)λ′Qλ + o(D−1). (63)

E

[
(β̂E − β0)′

∂2g

∂β∂θ′
(θ̂ − θ0)

]
= o(D−1). (64)

Thus, (58)–(60) and (63)–(64) lead to the desired result. 2

References

Baillo, A. and Molina, I. (2005). Mean squared errors of small area estimators under a
unit-level multivariate model. Working Paper, Statistics and Econometrics Series. Uni-
versidad Carlos III de Madrid, 05-40 (07).

Bhandary, M. and Alam, M.K. (2000). Test for the equality of intraclass correlation coeffi-
cients under unequal family sizes for several populations. Communications in Statistics–
Theory and Methods, 29, 755–768.

Das, K., Jiang, J. and Rao, J. N. K. (2004). Mean squared error of empirical predictor,
Annals of Statistics, 32, 818–840.

Datta, G. S., Fay, R. E. and Ghosh, M. (1991). Hierarchical and Empirical Bayes Multivariate
Analysis in Small Area Estimation. Proceedings of Bureau of the Census 1991 Annual
Research Conference, 63–79, U. S. Bureau of the Census, Washington, DC.

Diggle, P. J., Heagerty, P., Liang, K. and Zeger, S. L. (2002). Analysis of Longitudinal Data.
Oxford University Press.

20



Fay, R. E. (1987). Application of multivariate regression to small domain estimation. Small
Area Statistics (eds. R. Platek, J. N. K. Rao, C. E. Särndal and M. P. Singh), 91–102,
Wiley, New York.

Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection
model. Biometrics, 31, 423–447.

Hobza, T., Molina, I. and Morales, D. (2002). Likelihood divergence statistics for testing
hypotheses in familial data. Communications in Statistics–Theory and Methods, 312,
415–434.

Jiang, J. and Lahiri, P. (2006). Mixed Model Prediction and Small Area Estimation. Test,
15, 1–84.

Prasad, N. G. N. and Rao, J. N. K. (1990). The estimation of the mean squared error of
small-area estimators. Journal of the American Statistical Association, 85, 163–171.

Rao, J. N. K. (2003). Small Area Estimation. Wiley, New Jersey.

Slud, E. and Maiti, T. (2006). Mean-squared error estimation in transformed Fay-Herriot
models. Journal of the Royal Statistical Society B. 68, 239–257.

Srivastava, M. S. (1984). Estimations of interclass correlations in familial data. Biometrika,
71, 177–85.

Srivastava, M. S. and Katapa, R. S. (1986). Comparison of estimators of interclass and intra-
class correlations from familial data. The Canadian Journal of Statistics, 14, 29–42.

Srivastava, V. K. and Tiwari, R. (1976). Evaluation of Expectations of Products of Stochastic
Matrices. Scandinavian Journal of Statistics, 3, 135–138.

21


