2,115,225 research outputs found
Pseudo Random Generator Based Public Key Cryptography
Advances in communication technology have seen strong interest in digital data transmission. However, illegal data access has become more easy and prevalent in wireless and general communication networks. In order to protect the valuable data from illegal access, different kinds of cryptographic systems have been proposed. In this paper, a new integrating channel coding and cryptography design communication systems is proposed. So we use cryptography as an error detection tool. In order to preserve the advantages of encryption and to improve its disadvantages, we place the encryptor before the encoder. The hamming encoder is used to select the generator matrix to be used as a block code to form the new system .In this the security of common cryptographic primitive i.e a key stream generator based on LFSR can be strengthened by using the properties of a physical layer.So, a passive eaves dropping will experience great difficulty in cracking the LFSR based cryptography system as the computational complexity of discovering the secret key increases to large extent. The analysis indicates that the proposed design possesses the following feature. Its security is higher than the conventional one with the channel encoder only. Privacy is more due to unknown random codes. As the applied codes are unknown to a hostile user, this means that it is hardly possible to detect the message of another user. Anti-jam performance is good. It overcomes the disadvantage of Chaos based cryptography system as input data is not extended and hence bandwidth is not wasted. Moreover, the computer simulation shows that the proposed system has a good ability in error detection especially when the SNR per bit is moderate high, and the detection ability is enhanced when the increased length of Hamming code is employed
k-Connectivity in Random Key Graphs with Unreliable Links
Random key graphs form a class of random intersection graphs and are
naturally induced by the random key predistribution scheme of Eschenauer and
Gligor for securing wireless sensor network (WSN) communications. Random key
graphs have received much interest recently, owing in part to their wide
applicability in various domains including recommender systems, social
networks, secure sensor networks, clustering and classification analysis, and
cryptanalysis to name a few. In this paper, we study connectivity properties of
random key graphs in the presence of unreliable links. Unreliability of the
edges are captured by independent Bernoulli random variables, rendering edges
of the graph to be on or off independently from each other. The resulting model
is an intersection of a random key graph and an Erdos-Renyi graph, and is
expected to be useful in capturing various real-world networks; e.g., with
secure WSN applications in mind, link unreliability can be attributed to harsh
environmental conditions severely impairing transmissions. We present
conditions on how to scale this model's parameters so that i) the minimum node
degree in the graph is at least k, and ii) the graph is k-connected, both with
high probability as the number of nodes becomes large. The results are given in
the form of zeroone laws with critical thresholds identified and shown to
coincide for both graph properties. These findings improve the previous results
by Rybarczyk on the k-connectivity of random key graphs (with reliable links),
as well as the zero-one laws by Yagan on the 1-connectivity of random key
graphs with unreliable links.Comment: Published in IEEE Transactions on Information Theor
A random quantum key distribution by using Bell states
We proposed a new scheme for quantum key distribution based on entanglement
swapping. By this protocol \QTR{em}{Alice} can securely share a random quantum
key with \QTR{em}{Bob}, without transporting any particle.Comment: Accepted by J. Opt. B: Quantum Semiclass. Op
Deep Random based Key Exchange protocol resisting unlimited MITM
We present a protocol enabling two legitimate partners sharing an initial
secret to mutually authenticate and to exchange an encryption session key. The
opponent is an active Man In The Middle (MITM) with unlimited computation and
storage capacities. The resistance to unlimited MITM is obtained through the
combined use of Deep Random secrecy, formerly introduced and proved as
unconditionally secure against passive opponent for key exchange, and universal
hashing techniques. We prove the resistance to MITM interception attacks, and
show that (i) upon successful completion, the protocol leaks no residual
information about the current value of the shared secret to the opponent, and
(ii) that any unsuccessful completion is detectable by the legitimate partners.
We also discuss implementation techniques.Comment: 14 pages. V2: Updated reminder in the formalism of Deep Random
assumption. arXiv admin note: text overlap with arXiv:1611.01683,
arXiv:1507.0825
- …