5 research outputs found

    A Hybrid Deep Learning Approach for Epileptic Seizure Detection in EEG Signals

    Get PDF
    Early detection and proper treatment of epilepsy is essential and meaningful to those who suffer from this disease. The adoption of deep learning (DL) techniques for automated epileptic seizure detection using electroencephalography (EEG) signals has shown great potential in making the most appropriate and fast medical decisions. However, DL algorithms have high computational complexity and suffer low accuracy with imbalanced medical data in multi seizure-classification task. Motivated from the aforementioned challenges, we present a simple and effective hybrid DL approach for epileptic seizure detection in EEG signals. Specifically, first we use a K-means Synthetic minority oversampling technique (SMOTE) to balance the sampling data. Second, we integrate a 1D Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) network based on Truncated Backpropagation Through Time (TBPTT) to efficiently extract spatial and temporal sequence information while reducing computational complexity. Finally, the proposed DL architecture uses softmax and sigmoid classifiers at the classification layer to perform multi and binary seizure-classification tasks. In addition, the 10-fold cross-validation technique is performed to show the significance of the proposed DL approach. Experimental results using the publicly available UCI epileptic seizure recognition data set shows better performance in terms of precision, sensitivity, specificity, and F1-score over some baseline DL algorithms and recent state-of-the-art techniques

    Weighted ensemble-model and network analysis: a method to predict fluid intelligence via naturalistic functional connectivity

    Get PDF
    Objectives: Functional connectivity triggered by naturalistic stimulus (e.g., movies) and machine learning techniques provide a great insight in exploring the brain functions such as fluid intelligence. However, functional connectivity are considered to be multi-layered, while traditional machine learning based on individual models not only are limited in performance, but also fail to extract multi-dimensional and multi-layered information from brain network. Methods: In this study, inspired by multi-layer brain network structure, we propose a new method namely Weighted Ensemble-model and Network Analysis, which combines the machine learning and graph theory for improved fluid intelligence prediction. Firstly, functional connectivity analysis and graphical theory were jointly employed. The network and graphical indices computed using the preprocessed fMRI data were then fed into auto-encoder parallelly for feature extraction to predict the fluid intelligence. In order to improve the performance, different models were automatically stacked and fused with weighted values. Finally, layers of auto-encoder were visualized to better illustrate the impacts, followed by the evaluation of the performance to justify the mechanism of brain functions. Results: Our proposed methods achieved best performance with 3.85 mean absolute deviation, 0.66 correlation coefficient and 0.42 R-squared coefficient, outperformed other state-of-the-art methods. It is also worth noting that, the optimization of the biological pattern extraction was automated though the auto-encoder algorithm. Conclusion: The proposed method not only outperforming the state-of-the-art reports, but also able to effectively capturing the common and biological pattern from functional connectivity during naturalistic movies state for potential clinical explorations

    Random ensemble learning for EEG classification

    No full text
    Real-time detection of seizure activity in epilepsy patients is critical in averting seizure activity and improving patients\u27 quality of life. Accurate evaluation, presurgical assessment, seizure prevention, and emergency alerts all depend on the rapid detection of seizure onset. A new method of feature selection and classification for rapid and precise seizure detection is discussed wherein informative components of electroencephalogram (EEG)-derived data are extracted and an automatic method is presented using infinite independent component analysis (I-ICA) to select independent features. The feature space is divided into subspaces via random selection and multichannel support vector machines (SVMs) are used to classify these subspaces. The result of each classifier is then combined by majority voting to establish the final output. In addition, a random subspace ensemble using a combination of SVM, multilayer perceptron (MLP) neural network and an extended k-nearest neighbors (k-NN), called extended nearest neighbor (ENN), is developed for the EEG and electrocorticography (ECoG) big data problem. To evaluate the solution, a benchmark ECoG of eight patients with temporal and extratemporal epilepsy was implemented in a distributed computing framework as a multitier cloud-computing architecture. Using leave-one-out cross-validation, the accuracy, sensitivity, specificity, and both false positive and false negative ratios of the proposed method were found to be 0.97, 0.98, 0.96, 0.04, and 0.02, respectively. Application of the solution to cases under investigation with ECoG has also been effected to demonstrate its utility
    corecore