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Abstract—Early detection and proper treatment of epilepsy is
essential and meaningful to those who suffer from this disease.
The adoption of deep learning (DL) techniques for automated
epileptic seizure detection using electroencephalography (EEG)
signals has shown great potential in making the most appropri-
ate and fast medical decisions. However, DL algorithms have
high computational complexity and suffer low accuracy with
imbalanced medical data in multi seizure-classification task.
Motivated from the aforementioned challenges, we present a
simple and effective hybrid DL approach for epileptic seizure
detection in EEG signals. Specifically, first we use a K-means
Synthetic minority oversampling technique (SMOTE) to balance
the sampling data. Second, we integrate a 1D Convolutional
Neural Network (CNN) with a Bidirectional Long Short-Term
Memory (BiLSTM) network based on Truncated Backpropaga-
tion Through Time (TBPTT) to efficiently extract spatial and
temporal sequence information while reducing computational
complexity. Finally, the proposed DL architecture uses softmax
and sigmoid classifiers at the classification layer to perform multi
and binary seizure-classification tasks. In addition, the 10-fold
cross-validation technique is performed to show the significance
of the proposed DL approach. Experimental results using the
publicly available UCI epileptic seizure recognition data set shows
better performance in terms of precision, sensitivity, specificity,
and F1-score over some baseline DL algorithms and recent state-
of-the-art techniques.

Index Terms—Convolutional Neural Network, Epileptic
seizure, Electroencephalographic, Electroencephalogra-
phy (EEG).
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I. INTRODUCTION

Epilepsy is a non-communicable neurological disorder dis-
ease that is typically associated with abrupt attacks [1]. Over
50 million people of various ages have been diagnosed with
epilepsy worldwide [2]. Epileptic seizures are characterized by
rapid and abnormal changes in the brain’s electrical activity
and the worst case, often trigger the whole body to become
unresponsive [3]. Though developed anti-epileptic medicines
have some therapeutic effects but they may result in body
damage or even death in some cases [4]. According to previous
research [5], electroencephalography (EEG) recordings moni-
tor the electrical activity of the brain by implanting electrodes
either outside the skull (extracranial recording) or inside the
skull (intracranial recording), providing data that can be used
for epilepsy seizure identification.

Furthermore, the scalp EEG data from multiple input chan-
nels with high temporal resolution from the brain can be
collected using distributed continuous sensing [6]. The epilep-
tic records are typically divided into four separate stages of
brain activity: interictal, preictal, ictal, and postictal in seizure
prediction research. This enormous amount of data can reveal
the synchronized activity of neurons in many brain regions.
As a result, epileptic seizure detection utilizing multi-channel
scalp EEG data has received significant attention in the neuro-
information technology field in recent years. Generally, neu-
rology specialists conduct visual examinations of patients in
clinics for the diagnosis of epilepsy. Furthermore, neurologists
usually spend a lot of time and effort analyzing long-term EEG
records for signs of epilepsy [7]. However, the majority of
current EEG automatic seizure detection techniques perform
poorly in real-time, particularly in terms of specificity and
sensitivity, making them ineffective for application in clinical
practice. The improved automated computer-aided system is
urgently required for clinical practice to support neurologists
with the 1D entity and accurately detect epileptic seizures. In
this way, the amount of time spent by the neurologist analyzing
long-term EEG recordings can be substantially minimized,
while accurate detection would be realized [8]. Previous
studies in [8], [9] used different machine and deep learning
(ML/DL) models to extract significant and unique features
from EEG biomedical signals. In contrast, DL classifiers, i.e.,
Convolutional Neural Network (CNN) and bidirectional long
short-term memory (BiLSTM), are recently in trend and have
proven to have the capability of excellent automated feature
extraction and classification of EEG epileptic seizures. For
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TABLE I: Related studies in seizure detection based on deep learning methods.

Publication Dataset Methods Achievement
[14] CHB-MIT 1D CNN, RNN Performed 97.05%, 97.10% accuracy.
[16] TUH EEG data 1D CNN Achieved 79.9% accuracy.
[20] Freiburg BiLSTM The proposed model has high accuracy

(98%) for binary classification.
[23] CHB-MIT GRU The proposed approaches accurately clas-

sified seizure and non-seizure classes per-
formed 98% accuracy).

[25] CHB-MIT 1D CNN, BiLSTM The models performed 96% and 95% ac-
curacy.

[18] Freiburg 1D CNN Accurately classified the epilepsy segments
(ictal, preictal).

[28] CHB-MIT BiLSTM The models performed 98% accuracy.
[26] CHB-MIT Hybrid 1D CNN-LSTM Achieved 96% accuracy.

instance, the CNN collects translation-invariant characteristics
from the signal, and the BiLSTM provides a superior predic-
tion on time-sequential data employing memory cell elements
to improve the epileptic seizure classification performance
[10]. Thus, hybrid DL models have shown more effective-
ness and superiority to classify epileptic seizures accurately.
However, most of these classifiers have high computational
complexity and suffer low accuracy with imbalanced medical
data in multi seizure classification task (to distinguish between
preictal and completely linked states) [11], [12]. Thus, the
critical task is to find out epileptic seizures from EEG record-
ings by implementing imbalance classification information that
possesses a higher duration of ictal than interictal, which
directly influences the classification performance of the model.
In this work, we propose a hybrid DL approach that combines
1D CNN and BiLSTM to efficiently extract spatial and tempo-
ral sequence information from the epileptic seizure dataset. At
the same time, this is the first EEG study that uses K-means
SMOTE and hybrid DL models with 10-fold cross-validation
for the automated classification of binary and five EEG classes.
Furthermore, to lower the computational complexity of the
proposed approach, we trained our model using Truncated
Backpropagation Through Time (TBPTT) mechanism.

A. Contribution
The following are the main contributions of this paper.
• A novel hybrid DL approach that combines 1D CNN

with BiLSTM model to automatically extract spatial
and temporal sequence information from the epileptic
seizure dataset is proposed. The proposed approach uses
softmax and sigmoid classifiers at the classification layer
to perform multi and binary seizure classification tasks.

• The K-means SMOTE technique is used especially for
binary EEG data to address the oversampling issue of
long-term EEG samples.

• We employ the Truncated Backpropagation Through
Time (TBPTT) mechanism to train the proposed model.
To the best of our knowledge, this study is the first to
integrate deep learning with the TBPTT algorithm for
epileptic seizure detection in EEG signals.

• To evaluate the classification performance of the proposed
1D CNN-BiLSTM model in terms of accuracy, sensitiv-

ity, precision, specificity, and f1-score, 1D CNN-LSTM,
1D CNN-GRU, and the other current ML/DL models
have been tested on the same publicly available UCI
epileptic seizure recognition data set.

The structure of the remaining article is as follows. In
Section II, we review the recent epileptic seizure detection
techniques with their limitations. In Section III, we introduce
the proposed framework, its functional components and the
proposed algorithm. Then, in Section IV, we have discussed
the experimental results. Finally, in Section V, the conclusion
and future work are highlighted.

II. RELATED WORK

Recently, various machine learning (ML) models, including
the Random Forest (RF), Support Vector Machine (SVM) and
K-Nearest Neighbor (K-NN) were used for epileptic seizure
detection using different EEG signal datasets [10], [13], [14].
In [13], an Artificial neural network (ANN) approach with
cost function for EEG epileptic seizure detection is designed.
The authors achieved a high accuracy with an f1-score of
86%. This investigation study addresses the imbalance dataset
issue using the CHB-MIT dataset. In [14], the authors im-
plemented a hybrid model of support vector machine, and
extended neighbour network (ENN) reported accuracy up to
97.7%. ML models can classify the EEG data, detect seizures
and identify 1D meaningful patterns without compromising
their overall performance. However, handling imbalanced EEG
data is a significant challenge for ML models and requires
high time complexity (sec). Furthermore, the extraction of
the distinctive and meaningful features of EEG signals is
conducted manually, which directly influences the model’s
classification performance [15]. To address such limitations
of the ML models, DL techniques have been extensively used
in different fields, such as detecting psychological disorders
and diseases [16].

In particular, the CNN extracts a distinctive and rich set
of meaningful features by applying different filters in the
convolutional layers [17]. The 1D CNN architecture is the
best choice for processing brain EEG signals because it is
a straightforward structure requiring fewer parameters. It is
faster than 2D CNN architecture and efficient in achieving
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high accuracy. Therefore, 1D CNN can diagnose epileptic
seizures [11], [18], [19]. However, CNN cannot remember
previous time series of patterns, making it difficult to learn
the most important attributes of EEG data presented in time
series form [20]. Thus, CNN faces difficulty reconstructing the
relationship between epileptic seizure outcomes and the raw
EEG. Recurrent neural networks (RNNs) can memorize past
information since they are trained on prior outputs.

RNNs are the most competitive models for processing
biomedical EEG signal data. Furthermore, they have been
widely used to overcome the aforementioned challenges and
have yielded promising results. To address the limitations of
RNNs, such as their lack of long-term memory and vanishing
gradient, the BiLSTM model has been used in [21]. In [22]
study used a 2-layer BiLSTM model with a SoftMax function
for analyzing the data and achieved an accuracy of 90%. While
the authors of [23] established a 3-layer LSTM architectural
approach for detection and achieved excellent results. In [24],
the authors proposed a hybrid model of GRU with BiLSTM.
The proposed work of [25] used ten alternative RNN architec-
tures, each with 31 layers, which provided the most accurate
results as the RNN model tends to help process the sequential
data and reduce the vanishing gradient problem.

Moreover, in [26], the authors applied various pre-
processing schemes and implemented a hybrid CNN-LSTM
model that comprises 13 layers and got an average accuracy of
96.65 % applied time frequency-domain signals for the binary
classification. The hybrid CNN-LSTM in epileptic seizure de-
tection has made some progress; however, there are still some
limitations. During model training, the unidirectional LSTM
only learns past signal sequences. The BiLSTM improves
recognition by integrating previous and future information.
To further improve the classification performance of the EEG
signal, the authors in [12] proposed a 1D CNN-LSTM hybrid
model for automatic feature extraction of the EEG signals
and classification of epileptic seizures. In [27], time series
EEG data were subjected to various pre-processing schemes
before feeding to their proposed CNN-LSTM model with 13
layers. The authors achieved efficient outcomes. Moreover,
the comparative study on [28] indicated that BiLSTM has
excellent classification performance compared to LSTM and
GRU. Table. I presents the recent literature based on deep
learning methods in seizure detection.

III. PROPOSED FRAMEWORK FOR EPILEPTIC SEIZURE
DETECTION IN EEG SIGNALS

In this section, we have discussed the main components and
proposed algorithm. This includes oversampling technique, ID
CNN, BiLSTM, proposed 1D CNN-BiLSTM and its training
using TBPTT mechanism. The proposed framework and its
working are shown in Fig. 1. The notation used in the proposed
framework is mentioned in Table II. The components are
described in the below subsections.

A. Oversampling Technique (K-means SMOTE)
In this research, most of the EEG data consists of non-

epileptic seizure samples, which are highly imbalanced, in-
cluding 2300 samples of epileptic seizure and 9200 samples

TABLE II: Notation Table.

Notation Description
ht Input gate
ft Forget gate
ot Output gate
σ Sigmoid function
f(x) Nonlinear function
tanh Hidden states of the LSTM model
xt Input of the timestamp
ct Cell state at time stemp (t)
Htforward Forward gate of the BiLSTM model
Htbackward Backward gate of the BiLSTM

model
htBilstm Both gates of BiLSTM layer
W ∗, U∗ Weight metrics of the respective

gates
b∗ Bias
Xm

n mth feature map of the nth layer
cib bth neurons of the i-feature map
k Window size

of non-epileptic seizure. For accurate EEG classification, the
data must be balanced. To balance the EEG dataset, K-means
SMOTE is used in the present study, which resamples the im-
balanced data within the region or boundary and overcomes the
issue of traditional SMOTE. In this study, the hyper-parameter
K-means for the SMOTE is 5. The mathematical equations and
summary of the K-means SMOTE are as follows:

Sparsity(j) =
D̄m

Sminority
(1)

Where D̄m represents the Euclidean distances within jth

cluster. While Sminority explain the minority sample of the
cluster. The imbalance division can be calculated as

Imbalance =
Sminority

Smajority
(2)

While the weight of the minority samples ratio can be calcu-
lated as

Weight =
Sparsity(j)∑
j=1 Sparsity(j)

(3)

The objective of the weight is to determine the sample in the
cluster. Finally, the SMOTE algorithm generates the cluster of
synthetic samples (Imbalance > 1) by,

ȳ = y + λ(ykn − y) (4)

Where y shows the random minority sample, ykn presents
the random sample selected by K-nearest neighbours of y,
while λ shows the random values 0 < λ < 1. After the
balanced samples, the data is fed into the proposed 1D CNN
for autonomous feature extraction. Furthermore, Algorithm
1 represents the whole process of the K-means SMOTE
technique using unbalanced EEG data.

B. 1D CNN

To extract the most relevant and effective features from
data of one-dimensional time series, the 1D CNN performed
1D convolutional operations to implement various filters. As
shown in Fig. 2, the arrow represented the 1D feature of the

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2023.3265983

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Shenzhen Institute of Advanced Technology CAS. Downloaded on April 11,2023 at 07:41:59 UTC from IEEE Xplore.  Restrictions apply. 



4

Fig. 1: A block diagram of the proposed model for EEG epileptic seizure detection.

Algorithm 1 K-means SMOTE
1: Input: Smaj ,Smin,K
2:
3: Output: KSmote

4:
5: Function:(Smaj ,Smin,K)
6: Yksmote= [ ]
7:
8: for i =1 to Length of Smin do
9: n = Knn(Yi, Smin,K)

10: R=[Smaj /100]
11: while R ≥= 0 do
12:13: while Yknn = Select random(n) do
14:
15: Yksmote =Yi + rand(0, 1)×∥Yknn − Yi∥
16:
17: R = R− 1
18: Return=KSmote

19: end while
20:

raw EEG signal. The feature maps and convolutional filters
of the 1D CNN allowed it to match the 1D feature of the
raw data of the EEG signal. However, the specifications of
the 1D convolution process were given in more depth in
the following sections. To extract high-dimensional features
that are essential for epileptic seizure detection tasks, it is
important to increase the number of convolutional layers (CLs)
in the CNN architecture.

C. BiLSTM

The BiLSTM uses two distinct RNNs to avoid the RNN’s
exploding gradient issues. Additionally, the BiLSTM layer
evaluates the EEG data in both directions, forward and back-
ward, extracting both short-term and long-term dependencies
(complex temporal feature), enabling it to precisely identify
the irregular EEG patterns that may signify an approaching
seizure. Then, categorization is done using the BiLSTM layer’s
output. The block diagram of the BiLSTM model is described

Fig. 2: Conceptualization operational process of 1D convolu-
tion.

Fig. 3: The typical block structure of the BiLSTM model.

in Fig. 3. The mathematical expression of the basic LSTM
units is explained as follows:

ht = f(Wh.xt + Ut.ht−1 + bh) (5)

ft = σ(Wf .xt + Uf .ht−1 + bf ) (6)

it = σ(Wi.xt + Ui.ht−1 + bi) (7)

ot = σ(Wo.xt + Uo.ht−1 + bo) (8)

Ct = ft ∗ ct− 1 + it tanh(Wc.xt + Uc.ht−1 + bc) (9)

ht = f(Wh.xt + Ut.ht−1 + bh) (10)

ht = ot × tanh(Ct) (11)
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where xt shows the input, W ∗, U∗ presents weights matrices,
b∗ is the bias, f(x) describes the nonlinear function. The
regular hidden state is denoted by tanh and ht. Technically,
BiLSTM has two separate LSTM units, one in the forward
direction and the other in the backward direction. The con-
catenation of two hidden states is ht, and its formulation is as
follows:

hbilstm
t = hforward

t ⊕ hbackward
t (12)

Moreover, BiLSTM has an advantage over LSTM and GRU
models. BiLSTM integrates previous and future information
about EEG epileptic seizures, improving the EEG classifi-
cation performance, while other ML/DL models lack both
information.

D. 1D CNN-BiLSTM

The proposed model (1D CNN-BiLSTM) comprised the
input layer, three convolutional layers, two BiLSTM layers,
three fully connected layers, and the output (soft-max) layer.
Initially, the 1D EEG signal is introduced directly to process
the input for the 1D CNN-BiLSTM, where the shape is 178 x
1. To extract the meaningful features from the EEG raw signal
data, the input is given to the first convolutional layer (Conv
Layer1), where the size of the convolutional Layer1 is 64.
Moreover, each convolutional kernel shape and the stride were
3 x 1 and 2. Rectified Linear Units (ReLUs) were implemented
as ReLU activation layers to optimize the proposed models
with gradient-based methods. The 1D convolutional layer
(CLs), along with ReLU activation, are calculated as

Xm
n = σ(

N−1∑
j=1

Conv1D(Kn−1
i,m + anm) (13)

Xm
n shows the mth feature map of the nth layer; while

Conv1D represents the operation of one-dimensional convolu-
tion operation Kn−1

i,m possess the i, j feature map of the n−1th

layer. Moreover, amn represents the nth layer of the m feature
map. while σ shows the ReLU activation function, can be
express as follows:

σ(Y ) =

{
Y, if Y > 0

0, if Y ≤ 0
(14)

After the convolution and activation function, the output
contains 64 feature that is mapped with an overall dimension
of (176 x 1) followed by a max-pooling layer. The size and
stride were both 2 after this layer, the one-dimensional (1D)
substantially decreases the training parameters for the 1D
CNN-BiLSTM and speeds up the training process. The max-
pooling is calculated as

Cb
i = max(cib = b ≤ b < b+ k) (15)

Where cib shows the bth neurons of the i-feature map after the
operation of max-pooling. While k shows the window size.
Afterwards, the feature maps were 64, and the size (88 ×1) is
obtained due to the pooling process while two convolutional
layers were applied to extract high dimension features that
might be used to assist the classification process Meanwhile,

Fig. 4: The detailed structure of the proposed 1D CNN-
BiLSTM model.

convolution layer 2 with the shape of (3 × 1) had 128 kernels,
while in convolution layer 3, there were 512 kernels in the
same shape. Additionally, the number of additional parameters
of the convolution layer 3 and convolution layer 2 is the
same as convolution layer 1. Initially, the map fed into 1D
CLs, got the feature maps 1024, consisting of the 82 × 1
size, then passes through an FC layer including 256 neurons.
Moreover, the dropout is applied with a fully connected (FC)
layer output. To better fit the input of BiLSTM layers, fully
connected layer1 concatenate with the output layer of the
convolution layers, which decreases the size of feature maps,
and the dropout could change the overfitting issues to some
extent. It is possible to overcome the long-term dependence
and vanishing gradient problem in the conventional RNN by
feeding the output features into the BiLSTM layer after they
pass through the fully connected Layer 1. While bidirectional
input runs in two directions: backwards to forward and forward
to backward, they can also work together to keep prior
information secure and improve the ability to extract useful
features from EEG data in a time series of peak-to-peak
phases. Besides, 64 and 32 neurons were included in BiLSTM
Layers 1 and 2 as shown in Fig. 4. After the feature extraction
process of the BiLSTM layers, the output is passed through
two fully connected layers (FC Layers 2 and FC Layers 3)
for further processing with 128 and 64 neurons, respectively.
Finally, the SoftMax activation layer is added with 1D CNN-
BiLSTM to improve the network’s results.

Further, we employed the BPTT for training the proposed
model. The transition function for a given epileptic seizure
detection system with state D, input Z and parameters ℘ is
as follows:

Dt+1 = F (Zt+1, Dt, ℘) (16)

The objective is to find a ℘ that minimizes total loss LoT with
respect to the desired outputs Pt.

LoT =

T∑
t=1

lot =

T∑
t=1

lo(Dt, Pt) (17)
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Algorithm 2 Hybrid 1D CNN-BiLSTM Model
Input: EEG Dataset=ED

2:
Output: ES ← 0 ,NS ← 1NS ← 2 and so on

1D CNN layer = C ; BiLSTM layers =D ; epochs= e; k-
Folds = k;

4: for k :=1 to 10 do
for epochs :=1 to e do

6: if select.layer[C] = 1D CNN then
Initialize F and W:

8: Calculate the features from the convolution layers ;
else

10: Create a feature vector (FV).
end if

12: if select.layers [D] = BiLSTM then
Arbitrarily create the F and W;

14: for each timestamp t; do
Compute ft, it, ot and ht;

16: ft = σ(Wf .xt + Uf .ht−1 + bf )
it = σ(Wi.xt + Ui.ht−1 + bi)

18: ot = σ(Wo.xt + Uo.ht−1 + bo)
Compute the ht vector;

20: ht = ot ∗ tanh(ct)
hbilstm
t = hforward

t ⊕ hbackward
t

22: end for
else

24: end if
end for

26: end for
while True do

28: Calculate the result of 1D CNN-BiLSTM;
Generate output;

30: Return output
end while=0

While in the 1D CNN-BiLSTM case, the Dt = (ot, ht), where
the ot represents the output layer’s activation function (AF),
while hidden layers AF is denoted by the ht. At this stage,
the transition functions are as follows:

ht+1 = tanh(Wd(Dt+1) +Whht + b) (18)

ot+1 = Woh(t+ 1) (19)

lot+1 = lo(ot+1, Pt+1) (20)

We have the parameters ℘ = (Wd,Wh, b). The objective is
to calculate the ΦLoT /ϕ℘. The TBPTT is responsible for
this whole computation. Such a process to avoid delay in the
training process. Now with the truncation length Lo < T ,
the gradient terms becomes ϕlot+1

ϕF
ϕD (Zt+1, Dt, ℘) every Lo

time steps, namely

ϕl̂ot :=

{
ϕlo
ϕD (Dt, Pt)

ϕlot+1
ϕF
ϕD (Zt+1, Dt, ℘)

(21)

Referring to the proposed 1D CNN-BiLSTM model in Fig.
4, the pseudo-code for epileptic seizure detection is shown in
Algorithms 2.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we present the experimental setup, dataset
information, performance metrics and a through analysis of

TABLE III: Experimental setup.

Computing resource Description
CPU 7th Generation, Core-i6 and 2.80

GHz processor
GPU NVIDIA GeForce 1060 ,6 GB.
O.S. 64-bit, Window.
RAM 8 GB.
Languages Python 3.8
Libraries Tensor Flow, Pandas, Keras, NumPy

and Scikitlearn

the proposed framework. Table III shows a comprehensive de-
scription of the hardware and software specifications employed
for the implementation of the proposed framework. Moreover,
the description of the parameters used in the proposed frame-
work is shown in Table IV.

A. Data set description

The original data set of epileptic seizures is a publicly
available dataset on Kaggle, namely UCI epileptic seizure
recognition data set, which includes five health conditions
[29]. The dataset is structured as follows: This includes five
folders of the 100 files, and every file measures the brainwave
measurement time to 23.6 seconds. The dataset includes
11,500 samples, or 23 x 500 (23 chunks* 500 in each folder),
including 178 features. The dataset is divided into five classes:
binary (y = 0, 1) and five classes (y = 0,1,2,3,4), which are
organized as follows:

• Class-0 (Epileptic seizure): EEG data of seizure activity
is in the class label ’S’.

• Class-1 (1st normal): The signal of the patient before
seizure activity and tumour located ’NS’.

• Class-2 (2nd normal): Healthy brain EEG recorded data
is in the class label ‘H.B.’

• Class-3 (3rd normal): Eyes closed were in the class label
’EC.’

• Class-4 (4th normal): Eyes opened were in the class label
‘EO.’

In the experimental analysis, we performed the binary and
multi-classification tasks. For binary, the target variable of the
EEG dataset was transformed as class 0: S, seizure (ictal)
and class 1: NS, non-seizures (preictal), while classes 1 to
4 for multi-classification, there is no need to transform the
targets. Fig. 5 depicts various raw EEG signal data types from
a representative subject in five different health states. It is
easy to distinguish the raw EEG signal waveform between
epileptic seizures and health conditions, but the difference can
hardly be observed between the various normal conditions of
the raw EEG signal. Furthermore, the analysis and diagnosis
by neurologists in all five classes are very important. Con-
sequently, the systematic evaluation of the proposed model
performance, both binary and five-class recognition problems
of epileptic seizure detection, were addressed. Table V presents
the full description of the UCI epileptic seizure recognition
data set. After the preparation of the dataset, the next step is
the data pre-processing, and it is fed into the model for further
processing. Finally, the classification is performed using the
proposed 1D CNN-BiLSTM approach.
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TABLE IV: Description of the hyperparameters employed by the proposed method.

Proposed Model Layer Shape of
layer Size Stride Kernel Activation

Function Other parameters

1D CNN-BiLSTM

Conv Layer 1 3 × 1 178 ×1 2 64 ReLU
Max-pooling layer - 88×1 2 64 -
Conv Layer2 3 × 1 - 2 128 ReLU
Conv Layer3 3 × 1 - 2 256 ReLU
FC layer1 - 82 × 1 - 512 - (Batch-size= 100),
BiLSTM layer - - - 64 - (epochs= 100),
BiLSTM layer - - - 32 - (Optimizer= Adam),
FC layer2 - - - 128 - (learning rate = 0.001)
FC layer3 - - - 64 -
Output layer - - - SoftMax

Fig. 5: Representation of EEG signals for seizures and non-seizure conditions in the time-domain (a-e).

TABLE V: Description of the UCI epileptic seizure recogni-
tion data set.

Class
(target)

Class Description Class labels No. of samples Binary classification Multi-
classification

0 Epileptic seizure. S 2300 2300 2300
1 1st-normal condition (Before

seizure, signal of the patient).
NS 2300 2300

2 2nd-normal condition (Healthy
brain EEG recorded data).

HB 2300 2300

3 3rd-normal condition (Eyes
closed have no seizure).

EC 2300 2300

4 4th-normal condition (Eyes
opened have no-seizure).

EO 2300

9200

2300

B. Performance metrics

The evaluation indicators below are computed to assess how
well the proposed framework performs in correctly differ-
entiating seizures from non-seizures using EEG records. To
calculate these metrics, the following parameters are used:

• True Positive (TP): Positive (Seizure) samples which are
predicted as positive.

• True Negative (TN): Negative (Non-seizure) samples that
are predicted as negative.

• False Positive (FP): Negative samples, which are pre-
dicted as positive.

• False Negative (FN): Positive samples, which are pre-
dicted as negative.

The following is the mathematical representation of accu-
racy (AC), sensitivity (SE), specificity (SP), precision (PR),
and Matthews’s correlation coefficient (MCC). For a better
indication of the classifier’s performance, we used F1-score
(F1). These metrics are usually adopted for evaluating the
detection of an epileptic seizure. AC = TP+TN

TP+TN+FP+FN ,
PR = TP

TP+FP , SE = TP
TP+FN , SP = TN

FP+TN , F1 =
2∗PR∗SE
PR+SE , MCC = TP+TN√

2(TP )+FP+2(FN)∗2(TN+FP )
. We have

also used a few more evaluation metrics in addition to the
above-mentioned. For example, False Detection Rate (FDR:
the ratio of PPV and NPV), the False Omission Rate (FOR: the
ratio of negative samples for which the condition of positive
is true), the False Positive Rate (FPR: shows the proportion of
incorrectly classified negative and total negative samples), and
the False Negative Rate (FNR: presents the ratio of the positive
samples that are incorrectly classified). FDR = FP

FP+TP ,
FOR = FN

FN+TN , FPR = FP
FP+TN , FNR = FN

FN+TP . In
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Fig. 6: Comparison of fitness value under (a) binary classifi-
cation, (b) multi-classification.

this paper, the analysis is carried out on the same experimen-
tal dataset using 10-fold cross-validation. In 10-fold cross-
validation, the EEG signal is randomly distributed into ten
portions, and eight of the ten portions were used to train the
proposed model. One portion is used for validation and one
for testing.

C. Analysis based on fitness value
Fig. 6 represents the fitness value analysis of the binary

and multi-classification tasks. The best k-fold is 10. When
the epoch is 5 to 10, the proposed model loss (%) is 20 %
in the binary classification task. When the epoch increases to
100, the loss of the proposed model gradually decreases by
4 % as compared to the 1D CNN-LSTM and 1D CNN-GRU
models. In the five classification task, when the epoch is 10,
the proposed model loss is 40 %, after 50 to 100 epochs the
proposed model loss drops to 25 % to 20 %. Therefore, the
proposed algorithm has a fast convergence rate as compared
to the 1D CNN-LSTM and 1D CNN-GRU models. This is
due to the TBPTT approach that we have used to train our
proposed DL model.

D. Confusion matrix
A confusion matrix can measure the classification per-

formance of the algorithms. Fig. 7 shows the normalized
confusion metrics of the proposed algorithm. It indicates that
the proposed 1D CNN-BiLSTM is superior based on the
classification performance of binary and the five classification
tasks of an epileptic seizure. As can be observed in Fig.
7(a) and Fig. 7(b), the proposed DL technique successfully
classified the majority of instances in the dataset correctly for
both the binary and the multi-class classification task.

E. Models efficiency in terms of computational time
In this subsection, we analyze the proposed model’s com-

putational time (testing time) and then perform a comparison
with the existing models. Because the training is mostly con-
ducted offline, the model training process’s computation time
is not considered. Besides, the testing procedure is regarded
as an essential metric since it would represent the model’s
efficiency and overall performance in terms of computational
time. Fig. 8(a) and Fig. 8(b) shows the time taken by the
proposed 1D CNN-BiLSTM model in binary and five-class
recognition tasks of epileptic seizure detection.

Fig. 7: Confusion matrix of the proposed 1D CNN-BiLSTM
model under (a) binary, (b) multi-classification.

Fig. 8: The speed efficiency under (a) binary, (b) multi-class.

Fig. 9: Comparison with other baseline techniques using (a)
binary classification, (b) multi-classification.

Fig. 10: TPR, TNR, and MCC under (a) binary, (b) multi-
classification.

F. Comparison with baseline approaches

The empirical analysis is conducted and compared with
some baseline approaches, such as the 1D CNN-LSTM and
1D CNN-GRU models of binary and multi-class EEG clas-
sification tasks. All the configurations and parameters of the
proposed models are given in the Table. IV for each task.
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TABLE VI: Comparison with baseline techniques with a 10-fold cross-validation strategy under binary classification task.

Performance metrics Models 1 2 3 4 5 6 7 8 9 10

AC (%)
1D CNN-GRU 95.39 95.41 95.50 95.44 95.60 95.57 95.80 96.05 96.03 96.10
1D CNN-LSTM 96.40 96.33 96.55 96.53 96.60 96.57 96.66 96.66 96.80 97.10
Proposed Model 98.40 98.61 99.05 99.13 99.10 99.16 99.20 99.30 99.27 99.41

PR (%)
1D CNN-GRU 95.10 95.12 95.25 95.22 95.30 95.30 95.40 95.50 95.49 95.55
1D CNN-LSTM 96.12 96.13 96.25 96.24 96.30 96.30 96.33 96.33 96.40 96.50
Proposed Model 98.20 98.30 98.50 98.52 98.60 98.56 98.80 98.86 98.80 98.99

SE (%)
1D CNN-GRU 95.00 95.06 95.12 95.13 95.15 95.16 95.20 95.25 95.25 95.26
1D CNN-LSTM 96.05 96.06 96.12 96.12 96.15 96.15 96.16 96.22 96.20 96.25
Proposed Model 98.10 98.15 98.30 98.26 98.30 98.30 98.40 98.40 98.50 98.80

SP (%)
1D CNN-GRU 95.00 95.03 95.06 95.10 95.12 95.30 95.10 95.25 95.25 95.12
1D CNN-LSTM 96.00 96.03 96.06 96.10 96.12 96.13 96.14 96.13 96.13 96.20
Proposed Model 98.00 98.06 98.14 98.13 98.15 98.17 98.19 98.20 98.25 98.40

F1 (%)
1D CNN-GRU 95.20 95.10 95.11 95.24 95.10 95.15 95.15 95.12 95.14 95.20
1D CNN-LSTM 96.10 96.08 96.20 96.12 96.15 96.14 96.20 96.20 96.16 96.21
Proposed Model 98.12 98.10 98.15 98.20 98.15 98.20 98.25 98.30 98.30 98.37

TABLE VII: Comparison with baseline techniques with a 10-fold cross-validation strategy under multi-classification task.

Performance metrics Models 1 2 3 4 5 6 7 8 9 10

AC (%)
1D CNN-GRU 79.13 79.10 79.25 79.30 79.40 79.57 79.80 79.90 79.93 80.00
1D CNN-LSTM 80.10 80.13 80.10 80.20 80.50 80.45 80.60 80.71 80.80 81.10
Proposed Model 83.05 83.13 83.20 83.24 83.55 83.51 83.70 83.71 83.75 84.10

PR (%)
1D CNN-GRU 78.80 78.77 78.86 78.88 78.90 78.99 79.00 79.10 79.15 79.20
1D CNN-LSTM 79.33 79.36 79.32 79.40 79.43 79.50 79.55 79.90 80.10 80.13
Proposed Model 82.20 82.30 82.28 82.52 82.55 82.56 82.80 82.86 82.80 83.00

SE (%)
1D CNN-GRU 78.30 78.27 78.37 78.40 78.45 78.50 78.60 78.80 78.85 78.90
1D CNN-LSTM 78.80 78.85 78.90 78.90 78.99 79.00 79.05 79.16 79.26 79.40
Proposed Model 82.00 82.10 82.12 82.14 82.20 82.30 82.34 82.42 82.50 82.52

SP (%)
1D CNN-GRU 78.20 78.24 78.25 78.30 78.32 78.34 78.36 78.40 78.50 78.89
1D CNN-LSTM 78.70 78.76 78.78 78.76 78.80 78.90 78.96 78.98 79.10 79.10
Proposed Model 81.80 81.90 81.90 82.00 82.05 82.14 82.20 82.30 82.30 82.40

F1 (%)
1D CNN-GRU 78.25 78.30 78.33 78.35 78.37 78.45 78.50 79.60 78.70 78.85
1D CNN-LSTM 78.75 78.80 78.86 78.80 78.85 78.95 79.00 78.90 79.16 79.20
Proposed Model 81.2 82.02 82.04 82.04 82.15 81.24 82.20 82.28 82.40 82.50

TABLE VIII: A comparative study of the proposed model with recent works on UCI- Epileptic data.
Examination type References Dataset Methods Metrics/Methods Pre-processing AC (%) SE (%) SP (%)

Binary classification

[30] UCI-Epileptic 1D CNN-LSTM Training (90%) N/A 99 98 97.70

[31] UCI-Epileptic CNN Training (80%) N/A 98 96 96
[32] UCI-Epileptic RF, SVM, KNN Training (80%) N/A 97.05, 97.05,

97
96, 96, 95 95.10, 95.20,

94
Proposed work UCI-Epileptic 1D CNN-BiLSTM+TBPTT 10-fold cross

validation
K-means SMOTE +
Normalization

99.41 98.99 98.80

Multi- classifications

[30] UCI-Epileptic 1D CNN-LSTM Training (70%) N/A 82 81.50 80.60

[33] UCI-Epileptic RBNN Training (70%) N/A 78 76.9 75.9
Proposed work UCI-Epileptic 1D CNN-BiLSTM+TBPTT 10-fold cross

validation
Normalization 84.10 82.52 82.40

TABLE IX: A comparative study of the proposed model with recent works on EEG seizure dataset.

References Dataset Methods Examination
type

Metrics/Methods AC (%) SE (%) SP (%)

[34] CHB-MIT CNN 2-class Training (80%) 92.8 93 93
[35] CHB-MIT LRCNN 2-class Training (70%) 91.05 93 93
[36] TUH EEG data RNN, CNN 2-class Training (80%) 97, 96 96.80 ,96 95, 95
[37] Bonn LNDP + ANN 2, 3-class Training (80%) 98.88, 98.22 97, 96.60 96.30, 95
[38] Bonn SVM 2, 3-class Training (80%) 98, 93.8 97, 93 95, 92

Proposed work UCI-Epileptic 1D CNN-BiLSTM+TBPTT 2, 5-class 10-fold cross
validation

99.41, 84.10 98.99, 82.52 98.80, 82.40

Various metrics, such as AC, PR, SE, SP, and F1, are taken
into consideration. Table. VI and Table.VII and Fig. 9 (a)
and Fig. 9 (b) indicate the value of the proposed model
performance compared to other seizure detection methods. For
the binary EEG task, the results obtained by the proposed
(1D CNN-BiLSTM) model are 99.41%, 98.99%, 98.80%,
98.40% and 98.37% while for the multi-EEG classification
task, 84.10%, 83%, 82.52%, 82.40% and 82.50% using 10-
fold cross-validation. However, the classification performance
of 1D CNN-LSTM and 1D CNN-GRU has not performed well
on both EEG classification tasks. The comparative analysis

of the True-Positive Rate (TPR), True-Negative Rate (TNR),
and MCC of the proposed 1D CNN-BiLSTM model, along
with 1D CNN-LSTM and 1D CNN-GRU for the binary and
multi-classification tasks is presented in Fig. 10(a) and 10(b)
respectively. Moreover, Fig. 11 shows that the proposed (1D
CNN-BiLSTM) model outperforms other models by reduc-
ing FDR, FNR, FPR and FOR. For instance, the proposed
model has achieved FDR (0.0026%), FPR (0.0031%), FOR
(0.0026%), and FNR (0.0032%) for binary classification and
FDR (0.0032%), FPR (0.0035%), FOR (0.0033%), and FNR
(0.0036%) for five class recognition tasks of epileptic seizure
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Fig. 11: FDR, FNR, FPR, FOR of the proposed model under
(a) binary, (b) multi-classification.

detection. Thus, the summary of the results shows that the
proposed 1D CNN-BiLSTM model is effective and efficient
in recognizing different EEG class states compared to other
methods.

G. Comparison with state-of-the-art approaches

Furthermore, to test the effectiveness of the proposed model
on binary and five EEG class tasks. The experimental results
are compared with the recent existing literature, as shown in
Table VIII, using the same UCI epileptic seizure recognition
data set. Moreover, we checked the efficiency, reliability and
classification of the proposed algorithms compared with recent
spectral baseline methods with well-known EEG data sets,
as shown in Table IX. The proposed method successfully
detected seizure and non-seizure classes in EEG epileptic
seizure detection. In addition, the testing time for the proposed
model is less i.e. 9.01 and 12.30 sec, compared to other
competitor models. On the other hand, the proposed hybrid
model, especially BiLSTM with 1D CNN, has advantages
over 1D CNN-LSTM and 1D CNN-GRU, because BiLSTM
can potentially process the EEG signals in both forward and
backward directions, which is better suited for detecting the
onset and offset of seizures in the recordings. Moreover, the
BiLSTM model handles long-term dependencies, effectively
reducing false positives and can handle long-term depen-
dencies. However, the proposed model has some limitations.
Initially, the performance of the 1D CNN-BiLSTM model is
highly dependent on the choice of hyper-parameters, such as
the number of filters in the CNN layer, the number of units in
the LSTM layer and the learning rate of the optimizer tuning
these hyperparameters can be time-consuming but thanks to
the power of GPU, we can overcome this limitation.

V. CONCLUSION

This research proposed a novel hybrid seizure detection
approach consisting of 1D CNN and Truncated Backprop-
agation Through Time (TBPTT) based Bidirectional Long
short-term Memory (BiLSTM) network for epileptic seizure
detection. In this work, first, the long-term EEG sample is
balanced using a novel K-means SMOTE technique before
the training process. Second, the most powerful capabilities
of the 1D CNN were used to extract discriminative EEG
signal features. Third, the BiLSTM network is fused with 1D
CNN to remember a sequence of EEG signals and solve the

RNN’s vanishing gradient problem to accelerate the training
process. The efficiency of the proposed model is demonstrated
through experiments carried out, including binary- and multi-
classification applied to a well-known UCI epileptic seizure
recognition data set. The results of the experiments indicated
that the proposed approach was substantially better in terms
of accuracy, precision, sensitivity, specificity, and F1-Score
on both binary and five-class EEG epileptic seizure detection
tasks. Additionally, we compared the proposed algorithm with
sibling hybrid deep learning models, including 1D CNN-
LSTM, 1D CNN-GRU and other existing ML/DL algorithms,
on different k-fold cross-validation to show the effective-
ness, accuracy and superiority of the algorithm for automatic
epileptic seizure detection. Future studies include testing the
proposed algorithms on other EEG datasets with federated and
transfer learning models.
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