203,792 research outputs found

    Software for Exact Integration of Polynomials over Polyhedra

    Full text link
    We are interested in the fast computation of the exact value of integrals of polynomial functions over convex polyhedra. We present speed ups and extensions of the algorithms presented in previous work. We present the new software implementation and provide benchmark computations. The computation of integrals of polynomials over polyhedral regions has many applications; here we demonstrate our algorithmic tools solving a challenge from combinatorial voting theory.Comment: Major updat

    Organic Design of Massively Distributed Systems: A Complex Networks Perspective

    Full text link
    The vision of Organic Computing addresses challenges that arise in the design of future information systems that are comprised of numerous, heterogeneous, resource-constrained and error-prone components or devices. Here, the notion organic particularly highlights the idea that, in order to be manageable, such systems should exhibit self-organization, self-adaptation and self-healing characteristics similar to those of biological systems. In recent years, the principles underlying many of the interesting characteristics of natural systems have been investigated from the perspective of complex systems science, particularly using the conceptual framework of statistical physics and statistical mechanics. In this article, we review some of the interesting relations between statistical physics and networked systems and discuss applications in the engineering of organic networked computing systems with predictable, quantifiable and controllable self-* properties.Comment: 17 pages, 14 figures, preprint of submission to Informatik-Spektrum published by Springe

    Robust Algorithm to Generate a Diverse Class of Dense Disordered and Ordered Sphere Packings via Linear Programming

    Full text link
    We have formulated the problem of generating periodic dense paritcle packings as an optimization problem called the Adaptive Shrinking Cell (ASC) formulation [S. Torquato and Y. Jiao, Phys. Rev. E {\bf 80}, 041104 (2009)]. Because the objective function and impenetrability constraints can be exactly linearized for sphere packings with a size distribution in dd-dimensional Euclidean space Rd\mathbb{R}^d, it is most suitable and natural to solve the corresponding ASC optimization problem using sequential linear programming (SLP) techniques. We implement an SLP solution to produce robustly a wide spectrum of jammed sphere packings in Rd\mathbb{R}^d for d=2,3,4,5d=2,3,4,5 and 66 with a diversity of disorder and densities up to the maximally densities. This deterministic algorithm can produce a broad range of inherent structures besides the usual disordered ones with very small computational cost by tuning the radius of the {\it influence sphere}. In three dimensions, we show that it can produce with high probability a variety of strictly jammed packings with a packing density anywhere in the wide range [0.6,0.7408...][0.6, 0.7408...]. We also apply the algorithm to generate various disordered packings as well as the maximally dense packings for d=2,3,4,5d=2,3, 4,5 and 6. Compared to the LS procedure, our SLP protocol is able to ensure that the final packings are truly jammed, produces disordered jammed packings with anomalously low densities, and is appreciably more robust and computationally faster at generating maximally dense packings, especially as the space dimension increases.Comment: 34 pages, 6 figure
    • …
    corecore