12,193 research outputs found

    Pairwise Confusion for Fine-Grained Visual Classification

    Full text link
    Fine-Grained Visual Classification (FGVC) datasets contain small sample sizes, along with significant intra-class variation and inter-class similarity. While prior work has addressed intra-class variation using localization and segmentation techniques, inter-class similarity may also affect feature learning and reduce classification performance. In this work, we address this problem using a novel optimization procedure for the end-to-end neural network training on FGVC tasks. Our procedure, called Pairwise Confusion (PC) reduces overfitting by intentionally {introducing confusion} in the activations. With PC regularization, we obtain state-of-the-art performance on six of the most widely-used FGVC datasets and demonstrate improved localization ability. {PC} is easy to implement, does not need excessive hyperparameter tuning during training, and does not add significant overhead during test time.Comment: Camera-Ready version for ECCV 201

    Temporal Localization of Fine-Grained Actions in Videos by Domain Transfer from Web Images

    Full text link
    We address the problem of fine-grained action localization from temporally untrimmed web videos. We assume that only weak video-level annotations are available for training. The goal is to use these weak labels to identify temporal segments corresponding to the actions, and learn models that generalize to unconstrained web videos. We find that web images queried by action names serve as well-localized highlights for many actions, but are noisily labeled. To solve this problem, we propose a simple yet effective method that takes weak video labels and noisy image labels as input, and generates localized action frames as output. This is achieved by cross-domain transfer between video frames and web images, using pre-trained deep convolutional neural networks. We then use the localized action frames to train action recognition models with long short-term memory networks. We collect a fine-grained sports action data set FGA-240 of more than 130,000 YouTube videos. It has 240 fine-grained actions under 85 sports activities. Convincing results are shown on the FGA-240 data set, as well as the THUMOS 2014 localization data set with untrimmed training videos.Comment: Camera ready version for ACM Multimedia 201

    Localizing by Describing: Attribute-Guided Attention Localization for Fine-Grained Recognition

    Full text link
    A key challenge in fine-grained recognition is how to find and represent discriminative local regions. Recent attention models are capable of learning discriminative region localizers only from category labels with reinforcement learning. However, not utilizing any explicit part information, they are not able to accurately find multiple distinctive regions. In this work, we introduce an attribute-guided attention localization scheme where the local region localizers are learned under the guidance of part attribute descriptions. By designing a novel reward strategy, we are able to learn to locate regions that are spatially and semantically distinctive with reinforcement learning algorithm. The attribute labeling requirement of the scheme is more amenable than the accurate part location annotation required by traditional part-based fine-grained recognition methods. Experimental results on the CUB-200-2011 dataset demonstrate the superiority of the proposed scheme on both fine-grained recognition and attribute recognition

    Part Detector Discovery in Deep Convolutional Neural Networks

    Full text link
    Current fine-grained classification approaches often rely on a robust localization of object parts to extract localized feature representations suitable for discrimination. However, part localization is a challenging task due to the large variation of appearance and pose. In this paper, we show how pre-trained convolutional neural networks can be used for robust and efficient object part discovery and localization without the necessity to actually train the network on the current dataset. Our approach called "part detector discovery" (PDD) is based on analyzing the gradient maps of the network outputs and finding activation centers spatially related to annotated semantic parts or bounding boxes. This allows us not just to obtain excellent performance on the CUB200-2011 dataset, but in contrast to previous approaches also to perform detection and bird classification jointly without requiring a given bounding box annotation during testing and ground-truth parts during training. The code is available at http://www.inf-cv.uni-jena.de/part_discovery and https://github.com/cvjena/PartDetectorDisovery.Comment: Accepted for publication on Asian Conference on Computer Vision (ACCV) 201
    • …
    corecore