2 research outputs found

    Hierarchical Latent Words Language Models for Robust Modeling to Out-Of Domain Tasks

    Get PDF
    Abstract This paper focuses on language modeling with adequate robustness to support different domain tasks. To this end, we propose a hierarchical latent word language model (h-LWLM). The proposed model can be regarded as a generalized form of the standard LWLMs. The key advance is introducing a multiple latent variable space with hierarchical structure. The structure can flexibly take account of linguistic phenomena not present in the training data. This paper details the definition as well as a training method based on layer-wise inference and a practical usage in natural language processing tasks with an approximation technique. Experiments on speech recognition show the effectiveness of h-LWLM in out-of domain tasks

    Conversational Arabic Automatic Speech Recognition

    Get PDF
    Colloquial Arabic (CA) is the set of spoken variants of modern Arabic that exist in the form of regional dialects and are considered generally to be mother-tongues in those regions. CA has limited textual resource because it exists only as a spoken language and without a standardised written form. Normally the modern standard Arabic (MSA) writing convention is employed that has limitations in phonetically representing CA. Without phonetic dictionaries the pronunciation of CA words is ambiguous, and can only be obtained through word and/or sentence context. Moreover, CA inherits the MSA complex word structure where words can be created from attaching affixes to a word. In automatic speech recognition (ASR), commonly used approaches to model acoustic, pronunciation and word variability are language independent. However, one can observe significant differences in performance between English and CA, with the latter yielding up to three times higher error rates. This thesis investigates the main issues for the under-performance of CA ASR systems. The work focuses on two directions: first, the impact of limited lexical coverage, and insufficient training data for written CA on language modelling is investigated; second, obtaining better models for the acoustics and pronunciations by learning to transfer between written and spoken forms. Several original contributions result from each direction. Using data-driven classes from decomposed text are shown to reduce out-of-vocabulary rate. A novel colloquialisation system to import additional data is introduced; automatic diacritisation to restore the missing short vowels was found to yield good performance; and a new acoustic set for describing CA was defined. Using the proposed methods improved the ASR performance in terms of word error rate in a CA conversational telephone speech ASR task
    corecore