1,146 research outputs found

    Note on the upper bound of the rainbow index of a graph

    Full text link
    A path in an edge-colored graph GG, where adjacent edges may be colored the same, is a rainbow path if every two edges of it receive distinct colors. The rainbow connection number of a connected graph GG, denoted by rc(G)rc(G), is the minimum number of colors that are needed to color the edges of GG such that there exists a rainbow path connecting every two vertices of GG. Similarly, a tree in GG is a rainbow~tree if no two edges of it receive the same color. The minimum number of colors that are needed in an edge-coloring of GG such that there is a rainbow tree connecting SS for each kk-subset SS of V(G)V(G) is called the kk-rainbow index of GG, denoted by rxk(G)rx_k(G), where kk is an integer such that 2≤k≤n2\leq k\leq n. Chakraborty et al. got the following result: For every ϵ>0\epsilon> 0, a connected graph with minimum degree at least ϵn\epsilon n has bounded rainbow connection, where the bound depends only on ϵ\epsilon. Krivelevich and Yuster proved that if GG has nn vertices and the minimum degree δ(G)\delta(G) then rc(G)<20n/δ(G)rc(G)<20n/\delta(G). This bound was later improved to 3n/(δ(G)+1)+33n/(\delta(G)+1)+3 by Chandran et al. Since rc(G)=rx2(G)rc(G)=rx_2(G), a natural problem arises: for a general kk determining the true behavior of rxk(G)rx_k(G) as a function of the minimum degree δ(G)\delta(G). In this paper, we give upper bounds of rxk(G)rx_k(G) in terms of the minimum degree δ(G)\delta(G) in different ways, namely, via Szemer\'{e}di's Regularity Lemma, connected 22-step dominating sets, connected (k−1)(k-1)-dominating sets and kk-dominating sets of GG.Comment: 12 pages. arXiv admin note: text overlap with arXiv:0902.1255 by other author

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure
    • …
    corecore