42 research outputs found

    Rainbow Turán Problems

    Get PDF
    For a fixed graph H, we define the rainbow Turán number ex^*(n,H) to be the maximum number of edges in a graph on n vertices that has a proper edge-colouring with no rainbow H. Recall that the (ordinary) Turán number ex(n,H) is the maximum number of edges in a graph on n vertices that does not contain a copy of H. For any non-bipartite H we show that ex^*(n,H)=(1+o(1))ex(n,H), and if H is colour-critical we show that ex^{*}(n,H)=ex(n,H). When H is the complete bipartite graph K_{s,t} with s ≤ t we show ex^*(n,K_{s,t}) = O(n^{2-1/s}), which matches the known bounds for ex(n,K_{s,t}) up to a constant. We also study the rainbow Turán problem for even cycles, and in particular prove the bound ex^*(n,C_6) = O(n^{4/3}), which is of the correct order of magnitude

    Properly colored and rainbow cycles in edge-colored graphs

    Get PDF

    Graphs without a rainbow path of length 3

    Full text link
    In 1959 Erd\H{o}s and Gallai proved the asymptotically optimal bound for the maximum number of edges in graphs not containing a path of a fixed length. Here we study a rainbow version of their theorem, in which one considers k1k \geq 1 graphs on a common set of vertices not creating a path having edges from different graphs and asks for the maximal number of edges in each graph. We prove the asymptotically optimal bound in the case of a path on three edges and any k1k \geq 1

    Essentially tight bounds for rainbow cycles in proper edge-colourings

    Full text link
    An edge-coloured graph is said to be rainbow if no colour appears more than once. Extremal problems involving rainbow objects have been a focus of much research over the last decade as they capture the essence of a number of interesting problems in a variety of areas. A particularly intensively studied question due to Keevash, Mubayi, Sudakov and Verstra\"ete from 2007 asks for the maximum possible average degree of a properly edge-coloured graph on nn vertices without a rainbow cycle. Improving upon a series of earlier bounds, Tomon proved an upper bound of (logn)2+o(1)(\log n)^{2+o(1)} for this question. Very recently, Janzer-Sudakov and Kim-Lee-Liu-Tran independently removed the o(1)o(1) term in Tomon's bound, showing a bound of O(log2n)O(\log^2 n). We prove an upper bound of (logn)1+o(1)(\log n)^{1+o(1)} for this maximum possible average degree when there is no rainbow cycle. Our result is tight up to the o(1)o(1) term, and so it essentially resolves this question. In addition, we observe a connection between this problem and several questions in additive number theory, allowing us to extend existing results on these questions for abelian groups to the case of non-abelian groups
    corecore