31,831 research outputs found

    Computing Minimum Rainbow and Strong Rainbow Colorings of Block Graphs

    Get PDF
    A path in an edge-colored graph GG is rainbow if no two edges of it are colored the same. The graph GG is rainbow-connected if there is a rainbow path between every pair of vertices. If there is a rainbow shortest path between every pair of vertices, the graph GG is strongly rainbow-connected. The minimum number of colors needed to make GG rainbow-connected is known as the rainbow connection number of GG, and is denoted by rc(G)\text{rc}(G). Similarly, the minimum number of colors needed to make GG strongly rainbow-connected is known as the strong rainbow connection number of GG, and is denoted by src(G)\text{src}(G). We prove that for every k≥3k \geq 3, deciding whether src(G)≤k\text{src}(G) \leq k is NP-complete for split graphs, which form a subclass of chordal graphs. Furthermore, there exists no polynomial-time algorithm for approximating the strong rainbow connection number of an nn-vertex split graph with a factor of n1/2−ϵn^{1/2-\epsilon} for any ϵ>0\epsilon > 0 unless P = NP. We then turn our attention to block graphs, which also form a subclass of chordal graphs. We determine the strong rainbow connection number of block graphs, and show it can be computed in linear time. Finally, we provide a polynomial-time characterization of bridgeless block graphs with rainbow connection number at most 4.Comment: 13 pages, 3 figure

    Conflict-free connection numbers of line graphs

    Full text link
    A path in an edge-colored graph is called \emph{conflict-free} if it contains at least one color used on exactly one of its edges. An edge-colored graph GG is \emph{conflict-free connected} if for any two distinct vertices of GG, there is a conflict-free path connecting them. For a connected graph GG, the \emph{conflict-free connection number} of GG, denoted by cfc(G)cfc(G), is defined as the minimum number of colors that are required to make GG conflict-free connected. In this paper, we investigate the conflict-free connection numbers of connected claw-free graphs, especially line graphs. We first show that for an arbitrary connected graph GG, there exists a positive integer kk such that cfc(Lk(G))≤2cfc(L^k(G))\leq 2. Secondly, we get the exact value of the conflict-free connection number of a connected claw-free graph, especially a connected line graph. Thirdly, we prove that for an arbitrary connected graph GG and an arbitrary positive integer kk, we always have cfc(Lk+1(G))≤cfc(Lk(G))cfc(L^{k+1}(G))\leq cfc(L^k(G)), with only the exception that GG is isomorphic to a star of order at least~55 and k=1k=1. Finally, we obtain the exact values of cfc(Lk(G))cfc(L^k(G)), and use them as an efficient tool to get the smallest nonnegative integer k0k_0 such that cfc(Lk0(G))=2cfc(L^{k_0}(G))=2.Comment: 11 page
    • …
    corecore