16 research outputs found

    MODIS and VIIRS Lunar Observations and Applications

    Get PDF
    Terra and Aqua MODIS have successfully operated for more than 13 and 11 years since their launch in 1999 and 2002, respectively. The VIIRS instrument on-board the S-NPP launched in 2011 has also operated for nearly 2 years. Both MODIS and VIIRS make observations in the reflective solar and thermal emissive regions and their on-orbit calibration and characterization are provided by a set of on-board calibrators (OBC). In addition, lunar observations have been made on a regular basis to support sensor on-orbit calibration. This paper provides a brief overview of MODIS and VIIRS instrument on-orbit calibration and characterization activities. It describes the approaches and strategies developed to schedule and perform on-orbit lunar observations. Specific applications of MODIS and VIIRS lunar observations discussed in this paper include radiometric calibration stability monitoring and performance assessment of sensor spatial characterization. Results derived from lunar observations, such as sensor response (or gain) trending and band-to-band registration, are compared with that derived from sensor OBC. The methodologies and applications presented in this paper can also be applied to other earth observing sensors

    A 20-YEAR CLIMATOLOGY OF GLOBAL ATMOSPHERIC METHANE FROM HYPERSPECTRAL THERMAL INFRARED SOUNDERS WITH SOME APPLICATIONS

    Get PDF
    Atmospheric Methane (CH4) is the second most important greenhouse gas after carbon dioxide (CO2), and accounts for approximately 20% of the global warming produced by all well-mixed greenhouse gases. Thus, its spatiotemporal distributions and relevant long-term trends are critical to understanding the sources, sinks, and global budget of atmospheric composition, as well as the associated climate impacts. The current suite of hyperspectral thermal infrared sounders has provided continuous global methane data records since 2002, starting with the Atmospheric Infrared Sounder (AIRS) onboard the NASA EOS/Aqua satellite launched on 2 May 2002. The Cross-track Infrared Sounder (CrIS) was launched onboard the Suomi National Polar Orbiting Partnership (SNPP) on 28 October 2011 and then on NOAA-20 on 18 November 2017. The Infrared Atmospheric Sounding Interferometer (IASI) was launched onboard the EUMETSAT MetOp-A on 19 October 2006, followed by MetOp-B on 17 September 2012, then Metop-C on 7 November 2018. In this study, nearly two decades of global CH4 concentrations retrieved from the AIRS and CrIS sensors were analyzed. Results indicate that the global mid-upper tropospheric CH4 concentrations (centered around 400 hPa) increased significantly from 2003 to 2020, i.e., with an annual average of ~1754 ppbv in 2003 and ~1839 ppbv in 2020. The total increase is approximately 85 ppbv representing a +4.8% change in 18 years. More importantly, the rate of increase was derived using satellite measurements and shown to be consistent with the rate of increase previously reported only from in-situ observational measurements. It further confirmed that there was a steady increase starting in 2007 that became stronger since 2014, as also reported from the in-situ observations. In addition, comparisons of the methane retrieved from the AIRS and CrIS against in situ measurements from NOAA Global Monitoring Laboratory (GML) were conducted. One of the key findings of this comparative study is that there are phase shifts in the seasonal cycles between satellite thermal infrared measurements and ground measurements, especially in the middle to high latitudes in the northern hemisphere. Through this, an issue common in the hyperspectral thermal sensor retrievals were discovered that was unknown previously and offered potential solutions. We also conducted research on some applications of the retrieval products in monitoring the changes of CH4 over the selected regions (the Arctic and South America). Detailed analyses based on local geographic changes related to CH4 concentration increases were discussed. The results of this study concluded that while the atmospheric CH4 concentration over the Arctic region has been increasing since the early 2000s, there were no catastrophic sudden jumps during the period of 2008-2012, as indicated by the earlier studies using pre-validated retrieval products. From our study of CH4 climatology using hyperspectral infrared sounders, it has been proved that the CH4 from hyperspectral sounders provide valuable information on CH4 for the mid-upper troposphere and lower stratosphere. Future approaches are suggested that include: 1) Utilizing extended data records for CH4 monitoring using AIRS, CrIS, and other potential new generation hyperspectral infrared sensors; 2). Improving the algorithms for trace gas retrievals; and 3). Enhancing the capacity to detect CH4 changes and anomalies with radiance signals from hyperspectral infrared sounders

    CIRA annual report FY 2015/2016

    Get PDF
    Reporting period April 1, 2015-March 31, 2016

    Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the 'Deep Blue' Aerosol Project

    Get PDF
    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue dataset also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nanometers AOD of order plus or minus (0.03 plus 10 percent), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Angstrom exponent and fine mode AOD fraction are also well-correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products

    CIRA annual report FY 2016/2017

    Get PDF
    Reporting period April 1, 2016-March 31, 2017

    Exploring Himawari-8 geostationary observations for the advanced coastal monitoring of the Great Barrier Reef

    Get PDF
    Larissa developed an algorithm to enable water-quality assessment within the Great Barrier Reef (GBR) using weather satellite observations collected every 10 minutes. This unprecedented temporal resolution records the dynamic nature of water quality fluctuations for the entire GBR, with applications for improved monitoring and management

    CIRA annual report FY 2013/2014

    Get PDF

    CIRA annual report FY 2017/2018

    Get PDF
    Reporting period April 1, 2017-March 31, 2018

    CIRA annual report FY 2014/2015

    Get PDF
    Reporting period July 1, 2014-March 31, 2015

    Atmospheric Research 2018 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earths atmosphere and the influence of solar variability on the Earths climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions
    corecore