6 research outputs found

    Resource allocation in OFDMA networks with half-duplex and imperfect full-duplex users

    Get PDF
    Recent studies indicate the feasibility of in-band fullduplex (FD) wireless communications, where a wireless radio transmits and receives simultaneously in the same band. Due to its potential to increase the capacity, analyzing the performance of a cellular network that contains full-duplex devices is crucial. In this paper, we consider maximizing the weighted sum-rate of downlink and uplink of a single cell OFDMA network which consists of an imperfect FD base-station (BS) and a mixture of half-duplex and imperfect full-duplex mobile users. To this end, the joint problem of sub-channel assignment and power allocation is investigated and a two-step solution is proposed. A heuristic algorithm to allocate each sub-channel to a pair of downlink and uplink users with polynomial complexity is presented. The power allocation problem is convexified based on the difference of two concave functions approach, for which an iterative solution is obtained. Simulation results demonstrate that when all the users and the BS are perfect FD nodes the network throughput could be doubled, Otherwise, the performance improvement is limited by the inter-node interference and the self-interference. We also investigate the effect of the self-interference cancellation capability and the percentage of FD users on the network performance in both indoor and outdoor scenarios.Comment: 6 pages, 8 figures, Accepted in IEEE International Conference on Communication (ICC), Malaysia, 201

    Resource Allocation in Heterogenous Full-duplex OFDMA Networks: Design and Analysis

    Get PDF
    Recent studies indicate the feasibility of full-duplex (FD) bidirectional wireless communications. Due to its potential to increase the capacity, analyzing the performance of a cellular network that contains full-duplex devices is crucial. In this paper, we consider maximizing the weighted sum-rate of downlink and uplink of an FD heterogeneous OFDMA network where each cell consists of an imperfect FD base-station (BS) and a mixture of half-duplex and imperfect full-duplex mobile users. To this end, first, the joint problem of sub-channel assignment and power allocation for a single cell network is investigated. Then, the proposed algorithms are extended for solving the optimization problem for an FD heterogeneous network in which intra-cell and inter-cell interferences are taken into account. Simulation results demonstrate that in a single cell network, when all the users and the BSs are perfect FD nodes, the network throughput could be doubled. Otherwise, the performance improvement is limited by the inter-cell interference, inter-node interference, and self-interference. We also investigate the effect of the percentage of FD users on the network performance in both indoor and outdoor scenarios, and analyze the effect of the self-interference cancellation capability of the FD nodes on the network performance

    Resource Allocation in Heterogenous Full-duplex OFDMA Networks: Design and Analysis

    Get PDF
    Recent studies indicate the feasibility of full-duplex (FD) bidirectional wireless communications. Due to its potential to increase the capacity, analyzing the performance of a cellular network that contains full-duplex devices is crucial. In this paper, we consider maximizing the weighted sum-rate of downlink and uplink of an FD heterogeneous OFDMA network where each cell consists of an imperfect FD base-station (BS) and a mixture of half-duplex and imperfect full-duplex mobile users. To this end, first, the joint problem of sub-channel assignment and power allocation for a single cell network is investigated. Then, the proposed algorithms are extended for solving the optimization problem for an FD heterogeneous network in which intra-cell and inter-cell interferences are taken into account. Simulation results demonstrate that in a single cell network, when all the users and the BSs are perfect FD nodes, the network throughput could be doubled. Otherwise, the performance improvement is limited by the inter-cell interference, inter-node interference, and self-interference. We also investigate the effect of the percentage of FD users on the network performance in both indoor and outdoor scenarios, and analyze the effect of the self-interference cancellation capability of the FD nodes on the network performance.Comment: arXiv admin note: text overlap with arXiv:1605.0194

    Radio Resource Allocation with Inter-node Interference in Full-Duplex OFDMA Networks

    No full text
    In-band wireless full-duplex is a promising technology that enables a wireless node to transmit and receive at the same time on the same frequency spectrum. In OFDMA networks, the full-duplex transmission makes the resource allocation problem more challenging, in particular when user devices are not full-duplex capable. In this paper, we investigate the joint problem of subcarrier assignment and power allocation to maximize the sum-rate performance in full-duplex OFDMA networks. To achieve high throughput in the considered network, we propose to use a practical subcarrier assignment condition which allows a subcarrier to be allocated to a pair of uplink and downlink nodes when its inter-node channel gain is lower than its uplink channel gain. Considering this condition and the inter-node interference, we design three resource allocation algorithms which run for; i) uplink first, ii) downlink first, and iii) uplink and downlink in pair. Through simulation, we evaluate our solutions in comparison with conventional schemes with respect to performance gain
    corecore