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Beamforming Design for Full-Duplex MIMO
Interference Channels–QoS and Energy-Efficiency

Considerations
Ali Cagatay Cirik, Member, IEEE, Sudip Biswas, Student Member, IEEE, Satyanarayana Vuppala, Member, IEEE,

and Tharmalingam Ratnarajah, Senior Member, IEEE

Abstract—We consider a K link multiple-input multiple-output
(MIMO) interference channel where each link consists of two
full-duplex (FD) nodes. Two transmit beamforming design prob-
lems are solved, i) sum-power minimization problem subject to
rate constraints, and ii) energy-efficiency maximization problem
subject to individual power constraints. To tackle the sum-
power minimization problem, we first generalize the well-known
relationship between weighted-sum-rate (WSR) and weighted
minimum-mean-squared-error (WMMSE) problems, originally
used to solve the sum-rate maximization problems, and then
propose a low complexity centralized algorithm which converges
to a stationary point. To decrease the exchange of a huge
amount of data and excessive signaling traffic among the nodes, a
distributed algorithm is also proposed. For the energy-efficiency
maximization problem, the original fractional form optimization
problem is first transformed into an equivalent subtractive-
form optimization problem by exploiting the properties of frac-
tional programming, and then perform a dual-layer optimization
scheme. In the outer layer, the energy-efficiency parameter is
searched using a simple one-dimensional search, and in the inner
layer, the relationship between WSR and WMMSE is exploited
to solve the subtractive form optimization problem. Since the
proposed algorithms require perfect channel-state-information
(CSI), which is difficult to acquire in practice, we also propose
a robust design, by taking the imperfect channel knowledge into
consideration. It is shown in the simulations that the sum-power
achieved in FD mode depends heavily on the transmitter/receiver
distortion. Also the energy-efficiency of FD systems is lower than
that of half-duplex (HD) systems, as FD nodes need to overcome
self-interference and increased inter-user interference which leads
to high power consumption.

Keywords—Keywords-Energy-efficiency, full-duplex, MIMO in-
terference channel, QoS, self interference, transceiver designs.
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I. INTRODUCTION

MOBILE data traffic has explosively grown in recent
years, leading to an ever-growing demand for much

higher capacity, lower latency and energy-efficiency in wireless
networks. It has culminated in the development of the fifth
generation (5G) wireless communication systems, expected
to be deployed by the year 2020, with key goals of data
rates in the range of Gbps, billions of connected devices,
lower latency and low-cost, energy-efficient and environment-
friendly operation. Half-duplex (HD) wireless communication
systems, or commonly known as time-division duplex or
frequency-division duplex, employ two orthogonal channels to
transmit and receive, and thus they cannot achieve the maximal
spectral efficiency. Full-duplex (FD) wireless communication
systems on the other hand enable simultaneous transmission
and reception at the same time in the same frequency band,
and can be a promising technique to potentially double the link
capacity, and meet the projected increase in spectral efficiency.
Such systems have recently gained considerable attention in
academia [1]-[8].

The limiting factor on the performance of FD systems is
the strong self-interference at the front-end of the receiver
created by the signal leakage from the transmitter antennas
of a FD node to its own receiver antennas. Promising results
from experimental research that demonstrate the feasibility of
FD transmission using the off-the-shelf hardware are available
in [1]-[3], although RF front-end interference cancellation is
still an on-going research topic. However, due to imperfections
of radio devices such as amplifier non-linearity, phase noise,
and I/Q channel imbalance, the self-interference cannot be
canceled completely in reality. The residual self-interference
can still significantly affect the performance of the system.
Depending on the strength of the residual self-interference,
optimal transmit strategies for a HD system can be far from
optimal for the FD system. If the residual self-interference is
not well handled, it can still prevent us from exploiting the ben-
efits of FD wireless communications. Therefore, optimization
problems (power allocation, transceiver beamforming, etc.)
related to FD systems under this residual self-interference were
considered in [4]-[8].

Of late, the multiple-input multiple-output (MIMO) inter-
ference channels have attracted significant attention, since it is
the fundamental model behind many practical problems [9].
The performance of cellular communication systems (open
spectrum, multi-cell systems, etc.), where each cell causes
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interference to other cells can be carried out by focusing
on MIMO interference channels [10]. MIMO interference
channel for FD systems has been studied in [7] for sum-rate
maximization and [8] for sum mean-squared-error (MSE) min-
imization problems. To the best of our knowledge, sum-power
minimization and energy-efficiency maximization problems for
FD MIMO interference-channels have not been studied so far.
The authors in [4]-[7] have focused on the maximization of the
achievable rate and have not addressed the issue of Quality-of-
Service (QoS). However, in most practical cases, each user has
a desired data rate and likes to achieve it within the available
power. Thus, it is also an important problem to guarantee all
the users’ desired data rates in a system while consuming
minimum power [11]-[14].

Motivated by above, we provide an algorithm that minimizes
the sum-power in the system while guaranteeing the data rate
required by each user. In particular, we compute the minimum
sum-power consumed at a K-link FD MIMO interference
channel subject to rate constraints at each node of the system.
Each link has two FD nodes exchanging information simul-
taneously, and thus the nodes in each pair suffer from self-
interference due to operating in FD mode, and co-channel-
interference (CCI) due to simultaneous transmission at all
links. The method minimizes the sum-power consumed in the
system resulting in reduced amount of self-interference at the
users and CCI between users that are using the same frequency
band at the same time. In [15] and [16], an interesting solution
for the design of the transmit matrices for the weighted-sum-
rate (WSR) problem in a MIMO broadcast and interfering
broadcast channel is developed, respectively. Instead of directly
focusing on the WSR problem, a relation is established to the
weighted minimum-mean-squared (WMMSE) problem, which
is simpler to solve. The original WSR problem is then solved
through the WMMSE problem. This solution was generalized
to solve the sum-power minimization problem under the indi-
vidual rate constraints for MIMO interference networks in [14].
Here, we adopt this approach to solve the QoS problem in FD
MIMO interference channels, and develop a centralized low
complexity algorithm to find a stationary point.

The proposed centralized algorithm has a fast convergence
speed for small scale networks. However, it is not suitable for
large scale networks because the implementation of the central-
ized algorithm requires a central scheduler to coordinate the
calibration of channel matrices, collect all channel matrices,
and then compute and distribute the transmitter covariance
matrices of all links. Hence, we propose a distributed dual-
layer iterative algorithm, in which the computation of the
whole problem is decomposed into many smaller subproblems,
and is solved at each node with local channel-state-information
(CSI) and limited information exchange, so the computational
overhead is controllable as network grows.

Traditionally, the efficiency of a communication system has
been measured in terms of spectral efficiency, which is directly
related to the channel capacity in bit/s. This metric enables us
to identify how efficiently a limited frequency spectrum is uti-
lized. However, it fails to provide any insight on the efficiency
of the energy consumption of the system. Energy-efficiency
is currently one of the primary design goals of any wireless

communication system because of the increasing gap between
power consumption of signal processing circuits and battery
capacity. Improved energy-efficiency involves maximizing a
“throughput per Joule” metric [17]. Hence, to obtain an insight
on the efficiency of energy consumption of communication
systems, it is imperative to incorporate an energy-efficiency
metric in the performance evaluation framework.

Since a node transmits and receives simultaneously in the
FD system, it requires more energy than an HD node to
mitigate the self-interference and CCI [18], [19]. Hence, if
the transmit beamforming matrices are not designed properly,
the energy-efficiency of the FD system can be outperformed
by that of the HD system [6]. In this paper we study the
transmit beamforming design for energy-efficiency maximiza-
tion in FD MIMO interference channels. Since the original
problem is non-convex due to the coupling between variables
and its fractional form, we first transform the problem into
an equivalent subtractive form by exploiting the fractional
programming [20]-[21], and then propose a two-layer ap-
proach. In the outer layer, we apply one dimension search
to compute the energy-efficiency parameter, while in the inner
layer, an efficient beamforming optimization problem is solved
by exploiting the relationship between WSR and WMMSE
problems.

Since perfect CSI is assumed to be available at the trans-
mitters for the aforementioned algorithms, which is practically
impossible due to the inaccurate channel estimation, robust
transceiver designs that take into account imperfect channel
knowledge are of interest. Therefore, we propose a robust pre-
coder scheme to maximize the energy-efficiency of the network
subject to power constraints at the users under norm-bounded
channel estimation errors. We adopt an alternating iterative
approach to solve this non-convex optimization problem which
is proven to converge, wherein a convex sub-problem is solved
at each step.

Notations: Matrices and vectors are denoted as bold capital
and lowercase letters, respectively. (·)T is the transpose; (·)H is
the conjugate transpose. E {·}means the statistical expectation;
IN is the N by N identity matrix; 0N×M is the N by M
zero matrix; tr(·) is the trace; |·| is the determinant; diag (A)
is the diagonal matrix with the same diagonal elements as
A. CN

(
µ, σ2

)
denotes a complex Gaussian distribution with

mean µ and variance σ2. CN×M denotes the set of complex
matrices with a dimension of N by M . ⊥ denotes the statistical
independence.

II. SYSTEM MODEL

In this section, we describe the system model of a FD MIMO
interference channel consisting of K pairs as seen in Fig. 1.
The signals mentioned below are defined in complex baseband.
Each pair is equipped with multiple antennas and exchanges
information simultaneously in a two way communication. We
assume that the FD nodes in the ith link have Ni and Mi

transmit and receive antennas, respectively.
We also take into account the limited dynamic-range (DR).

Limited-DR is caused by non-ideal amplifiers, oscillators,
analog-to-digital converters (ADCs), and digital-to-analog con-
verters (DACs). We adopt the limited DR model in [4], which
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has also been commonly used in [7], [8]. Particularly, at
each receive antenna an additive white Gaussian “receiver
distortion” with variance β times the energy of the undistorted
received signal on that receive antenna is applied, and at
each transmit antenna, an additive white Gaussian “transmitter
noise” with variance κ times the energy of the intended trans-
mit signal is applied. This transmitter/receiver distortion model
is valid, since it was shown by hardware measurements in [22]
and [23] that the non-ideality of the transmitter and receiver
chain can be approximated by an independent Gaussian noise
model, respectively.

As illustrated in Fig. 1, the node i(a), i ∈ {1, . . . ,K} and
a ∈ {1, 2} receives signals from all the transmitters in the
system via MIMO channels. H

(ab)
ii ∈ CMi×Ni is the desired

channel between node a and b of the ith transmitter-receiver
pair, where b ∈ {1, 2} and b 6= a. H

(aa)
ii ∈ CMi×Ni , a ∈

{1, 2} denotes the self-interference channel at the node i(a).
H

(ac)
ij ∈ CMi×Nj denotes the CCI channel from the transmitter

antennas of the node c in the jth pair to the receiver antennas
of the node a in the ith pair, (i, j) ∈ {1, . . . ,K}, j 6= i
and (a, c) ∈ {1, 2}. Note that unlike self-interference, to
the best of our knowledge, no cancellation algorithm has been
implemented for the CCI so far. However, to handle the CCI,
there are some methods proposed in literature for FD cellular
systems, which are out of scope of our paper:

1) Avoid scheduling proximate users that cause serious
CCI to each other. For example, when a user sees strong
CCI from the other user, scheduler can schedule them
in orthogonal resources [24].

2) Use a subcarrier assignment that allocates each subcar-
rier to a pair of uplink and downlink nodes that have
lower CCI gain compared to the UL channel gain (CCI
gain should be smaller than the uplink channel gain to
prevent the excessive CCI) [25].

3) Focus on the scenario where a FD base-station commu-
nicates to FD users instead of HD users, and the users
are allocated exclusive subcarriers used for downlink
and uplink communications to avoid the CCI [26].

The transmitted data vector of size di at the the node i(a)

is denoted as d
(a)
i ∈ Cdi , i ∈ {1, . . . ,K}, a ∈ {1, 2},

and is assumed to be complex, zero mean, independent and

identically distributed (i.i.d.) with E
{

d
(a)
i

(
d

(a)
i

)H}
= Idi

The Ni × 1 signal vector transmitted by node i(a) is given by

x
(a)
i = V

(a)
i d

(a)
i , i = 1, . . . ,K, a ∈ {1, 2}, (1)

where V
(a)
i ∈ CNi×di represents the precoding matrix.

The received signal at node i(a) is written as

y
(a)
i =

√
ρi H

(ab)
ii

(
x

(b)
i + c

(b)
i

)
+
√
ηii H

(aa)
ii

(
x

(a)
i + c

(a)
i

)
+

K∑
j 6=i

2∑
c=1

√
ηij H

(ac)
ij

(
x

(c)
j + c

(c)
j

)
+ e

(a)
i

+ n
(a)
i , i ∈ {1, . . . ,K}, (a, b) ∈ {1, 2}, a 6= b. (2)

(21)

i ii
r H

(12)

i ii
r H

(22)

ii ii
h H

(11)

ii ii
h H

(2)

i
n

(1)

i
x
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Fig. 1. An illustration of a full-duplex MIMO interference channel.

Here, n
(a)
i ∈ CMi is the additive white Gaussian noise

(AWGN) vector at node i(a) with zero mean and unit co-
variance matrix, and it is uncorrelated to all the transmitted
signals. In (2), ρi denotes the average power gain of the ith
transmitter-receiver pair, ηii denotes the average power gain
of the self-interference channel at the ith pair, and ηij denotes
the average power gain of the CCI channel between the nodes
at the ith and jth pair.

Moreover, in (2), c
(a)
i ∈ CNi , i ∈ {1, . . . ,K}, a ∈ {1, 2}

is the transmitter noise at the transmitter antennas of node i(a),
which models the effect of limited transmitter DR and closely
approximates the effects of additive power-amplifier noise,
non-linearities in the DAC and phase noise. The covariance
matrix of c

(a)
i is given by κ (κ� 1) times the energy of the

intended signal at each transmit antenna [4]. In particular c
(a)
i

is modeled as

c
(a)
i ∼ CN

(
0, κ diag

(
V

(a)
i

(
V

(a)
i

)H))
, c

(a)
i ⊥ x

(a)
i ,(3)

where, as mentioned before, ⊥ denotes the statistical indepen-
dence.

Finally, in (2), e
(a)
i ∈ CMi , i ∈ {1, . . . ,K}, a ∈ {1, 2}

is the additive receiver distortion at the receiver antennas of
node i(a), which models the effect of limited receiver DR and
closely approximates the combined effects of additive gain-
control noise, non-linearities in the ADC and phase noise. Each
diagonal element of the covariance matrix of e

(a)
i is given by

β (β � 1) times the energy of the undistorted received signal
at each receive antenna [4]. In particular, e

(a)
i is modeled as

e
(a)
i ∼ CN

(
0, βdiag

(
Φ

(a)
i

))
, e

(a)
i ⊥ u

(a)
i , (4)

where Φ
(a)
i = Cov{u(a)

i } and u
(a)
i is the undistorted received

vector at the node i(a), i.e., u
(a)
i = y

(a)
i − e

(a)
i .
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Node i(a) knows the interfering codewords x
(a)
i , so the self-

interference term
√
η
ii
H

(aa)
ii x

(a)
i is known, and thus can be

cancelled [4]. The self-interference canceled signal can then
be written as

ỹ
(a)
i = y

(a)
i −√ηii H

(aa)
ii x

(a)
i

=
√
ρi H

(ab)
ii x

(b)
i + v

(a)
i , (5)

where v
(a)
i is the unknown interference-plus noise component

after self-interference cancellation, and is given by

v
(a)
i =

√
ρi H

(ab)
ii c

(b)
i +

√
ηii H

(aa)
ii c

(a)
i + e

(a)
i + n

(a)
i

+
K∑
j 6=i

2∑
c=1

√
ηij H

(ac)
ij

(
x

(c)
j + c

(c)
j

)
. (6)

Using (3)-(4), similar to [4], Σ
(a)
i , the covariance matrix of

v
(a)
i , is approximated as in (7) shown at the bottom of the

following page 1. The achievable rate of the node i(a), under
Gaussian signaling, can be written as

I
(a)
i (V) (8)

= log2

∣∣∣∣IMi
+ ρiH

(ab)
ii V

(b)
i

(
V

(b)
i

)H (
H

(ab)
ii

)H (
Σ

(a)
i

)−1
∣∣∣∣ ,

where V =
{

V
(a)
i : ∀(i, a)

}
is the set of all precoding

matrices.
Transceiver design in FD MIMO interference channels has

also been studied in [7] and [8] under the same transmit-
ter/receiver distortion model that we adopt in this paper.
However, unlike the sum-rate maximization problem in [7]
and sum-MSE minimization problem in [8], in this paper
we consider two different objective functions, i.e., sum-power
minimization and energy-efficiency maximization. The reasons
for the choice of these metrics are:
• The solution of the sum rate maximization and MSE

minimization problems favor the users in good channel
conditions, and cannot ensure that all the users in the
system are served with an acceptable QoS. In most
practical cases, each user has a desired data rate and likes
to achieve it within the available power. In this paper, we
will therefore study the problem of minimizing the sum
transmit power subject to achievable rate constraints for
all users.

• Green communications have drawn increasing attention
recently not only because of the rapid traffic increase
with the popularity of smart phones but also the lim-
ited energy supply with ever increasing prices. With
the promotion of green transmission in 5G networks,
which emphasizes on incorporating energy awareness
in communication systems, it is preferable to minimize
the total transmission power consumed in the system
or to maximize the energy-efficiency compared to the

1Note that in (7), the terms including the multiplication of κ and β are
negligible, and have been ignored in the approximation, since in practice κ�
1 and β � 1 as discussed in [4].

sum-rate maximization [7] and MSE minimization prob-
lems [8].

• Since the transmission and reception in the FD system
operate simultaneously in an active mode, the FD system
requires more energy than a HD one. Hence, if the
transceivers are not designed properly, the power/energy
consumption of the FD system can be much higher than
that of the HD system. This motivates us to study the
transceiver design for the sum-power minimization and
energy-maximization problems in FD MIMO interfer-
ence channels.

In [7], the well-known WSR and WMMSE relationship has
been exploited to solve the sum-rate maximization problem,
and in [8] second-order-cone programming (SOCP) method
has been applied to solve the MSE-based transceiver de-
sign problems. In Section III, based on [14], we extend
the relationship in [7] to solve the sum-power minimization
problem. However, unlike [7], where this relationship results in
a distributed solution, in the sum-power minimization problem,
this relationship results in a centralized solution, and thus
to decrease the exchange of a huge amount of data and
excessive signaling traffic among the nodes in the centralized
solution, in Section III-B, we propose a dual-decomposition
based distributed algorithm [27]. As for the energy-efficiency
maximization problem, in Section IV, we first propose to use a
parametric approach known as the Dinkelbach algorithm [20],
which allows us to express the fractional energy-efficiency
objective function in a parametric programming problem, and
then apply the well-known WSR and WMMSE relationship
as used in [17]. Finally, the proposed transceiver designs
are based on the assumption that perfect CSI is available
at the nodes, which is not realistic in practice. Hence, in
Section IV-B, we extend our proposed algorithms to robust
transceiver designs under the assumption that the knowledge
of CSI is imperfect, and propose semidefinite programming
(SDP)-based method to solve these optimization problems.

III. SUM-POWER MINIMIZATION

The sum-power minimization problem subject to individual
rate constraints is formulated as follows:

min
V

K∑
i=1

2∑
a=1

tr
{

V
(a)
i

(
V

(a)
i

)H}
(9)

s.t. I
(a)
i (V) ≥ R(a)

i , i = 1, . . . ,K, a = 1, 2, (10)

where R(a)
i is the desired data rate at the node i(a) in bits/s/Hz.

In this section, adopting the approach in [14], we generalize
the method in [15], [16] to find a stationary point for the
sum-power minimization problem (9)-(10). To that end, we
first need to establish the relationship between the achievable
rate and the MSE matrix in the FD MIMO interference
channels. Following the same steps as in [7], we can show
the relationship between the achievable rate and the minimum-
mean-squared-error (MMSE)-matrix as

I
(a)
i (V) = log2

∣∣∣∣(E
(a)
i (V)

)−1
∣∣∣∣ , (11)
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where MMSE matrix E
(a)
i (V) is defined as

E
(a)
i (V)

=

(
Idi

+ ρi

(
V

(b)
i

)H(
H

(ab)
ii

)H(
Σ

(a)
i

)−1

H
(ab)
ii V

(b)
i

)−1

.(12)

Now consider a sum-power minimization problem under the
individual weighted MSE constraints as

min
W,R,V

K∑
i=1

2∑
a=1

tr
{

V
(a)
i

(
V

(a)
i

)H}
(13)

s.t. tr
{

W
(a)
i MSE

(a)
i

}
− log2

∣∣∣ln 2W
(a)
i

∣∣∣− di
ln 2

≤ −R(a)
i , i = 1, . . . ,K, a = 1, 2, (14)

where W
(a)
i ∈ Cdi×di denotes a weight matrix associated

with the node i(a) and W =
{

W
(a)
i : ∀(i, a)

}
is the set of

all weight matrices. Here, MSE
(a)
i is the MSE matrix of the

node i(a), and can be written as

MSE
(a)
i

=
(√

ρiR
(a)
i H

(ab)
ii V

(b)
i − Idi

)(√
ρiR

(a)
i H

(ab)
ii V

(b)
i − Idi

)H
+ R

(a)
i Σ

(a)
i

(
R

(a)
i

)H
, (15)

where R
(a)
i ∈ Cdi×Mi is the linear receiver applied at node

i(a) to estimate the signal transmitted from node i(b) and
R =

{
R

(a)
i : ∀(i, a)

}
is the set of all receiver matrices. The

optimal receiver at the node i(a) for the problem is MMSE
receiver filter, and can be expressed as

R̄
(a)
i =

√
ρi

(
V

(b)
i

)H (
H

(ab)
ii

)H
(16)

×
(
ρiH

(ab)
ii V

(b)
i

(
V

(b)
i

)H (
H

(ab)
ii

)H
+ Σ

(a)
i

)−1

.

Similar to [15], [16], it can be shown that the gradient of
the problem (9)-(10) and the gradient of the problem (13)-(14)

are equal if the MSE-weights W
(a)
i are chosen as:

W
(a)
i =

1

ln 2

(
E

(a)
i (V)

)−1

. (17)

Since the Karush-Kuhn-Tucker (KKT) conditions of the (9)-
(10) and (13)-(14) problems can be satisfied simultaneously
with the choice of MSE-weights (17), we can solve the
problem (9)-(10) through solving the problem (13)-(14). In
other words, if V̄, W̄, R̄ denote the optimal solution of the
problem (13)-(14), then V̄ is also the optimal solution of the
problem (9)-(10). Hence we only need to solve problem (13)-
(14), which is convex in each of the optimization variables
V, W, R . We can use the block coordinate decent method
to solve (13)-(14). First, for fixed V,R, the optimal W̄ is
computed from (17). Secondly, for fixed V,W, the optimal
R̄ is the MMSE receiver given in (16). Finally, for fixed
R,W, the optimal transmit beamforming matrix, V̄ can be
obtained by solving (13)-(14) using the Lagrange dual method
as explained below.

The Lagrange function of the problem (13)-(14) is written
as

L (λ,V,W,R) =
K∑
i=1

2∑
a=1

tr
{

V
(a)
i

(
V

(a)
i

)H}

+

K∑
i=1

2∑
a=1

λ
(a)
i

(
tr
{

W
(a)
i MSE

(a)
i

}
− log2

∣∣∣ln 2W
(a)
i

∣∣∣− di
ln 2

+R
(a)
i

)
,(18)

where λ =
{
λ

(a)
i : ∀(i, a)

}
is the Lagrange multiplier vector.

The dual function of the problem (13)-(14) with fixed R,W
is

J (λ) = min
V
L (λ,V,W,R)

= min
V

K∑
i=1

2∑
a=1

tr
{

V
(a)
i

(
V

(a)
i

)H}

+
K∑
i=1

2∑
a=1

λ
(a)
i tr

{
W

(a)
i MSE

(a)
i

}
. (19)

Σ
(a)
i ≈ ρiκH

(ab)
ii diag

(
V

(b)
i

(
V

(b)
i

)H)(
H

(ab)
ii

)H
+ ηiiκH

(aa)
ii diag

(
V

(a)
i

(
V

(a)
i

)H)(
H

(aa)
ii

)H
+ βρidiag

(
H

(ab)
ii V

(b)
i

(
V

(b)
i

)H (
H

(ab)
ii

)H)
+ βηiidiag

(
H

(aa)
ii V

(a)
i

(
V

(a)
i

)H (
H

(aa)
ii

)H)
+

K∑
j 6=i

2∑
c=1

ηij

[
H

(ac)
ij

(
V

(c)
j

(
V

(c)
j

)H
+ κdiag

(
V

(c)
j

(
V

(c)
j

)H))(
H

(ac)
ij

)H]

+
K∑
j 6=i

2∑
c=1

βηijdiag
(

H
(ac)
ij V

(c)
j

(
V

(c)
j

)H (
H

(ac)
ij

)H)
+ IMi

= Σ̃
(a)

i + IMi . (7)
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For fixed λ, the optimal transmit beamforming matrix is
computed by taking the partial derivative of the function J (λ)

with respect to V
(b)
i , and is written as

V̄
(b)
i (λ)=

√
ρiλ

(a)
i

(
INi

+X
(b)
i

)−1(
R

(a)
i H

(ab)
ii

)H
W

(a)
i ,(20)

where X
(b)
i is shown in (21) at the bottom of the following

page. Since the problem (13)-(14) is convex under fixed R,W,
the optimal solution of the transmit beamforming is given by
V̄

(b)
i (λ∗), where λ∗ is the solution of the dual problem

max
λ

J (λ) , s.t. λ ≥ 0. (23)

Since the dual problem J (λ) in (23) is concave, a standard
subgradient algorithm can be used to solve the dual problem
in (23). The subgradient of J (λ) is given as

tr
{

W
(a)
i MSE

(a)
i (λ)

}
− log2

∣∣∣ln 2W
(a)
i

∣∣∣
− di

ln 2
+R

(a)
i , i = 1, . . . ,K, a = 1, 2, (24)

where MSE
(a)
i (λ) is obtained from (15) by replacing V

(b)
i

with V̄
(b)
i (λ).

A. Remarks
1) Convergence: The iterative alternating algorithm for

solving the sum-power minimization problem (9)-(10) through
the minimization problem (13)-(14) is given in Algorithm 1.
Since the problem (13)-(14) is not jointly convex over the
optimization variables, the proposed algorithm does not ensure
to converge to the global optimal solution. Because of the non-
convexity of the optimization problems we are dealing with, we
need to choose good initialization points to have a suboptimal
solution with a good performance. In [28], several reasonable
choices such as right singular matrices, random matrices and
interference alignment (IA) initialization have been proposed.
It follows from the general optimization theory [29] that the
proposed algorithm, which is the block coordinate descent
method applied to (13)-(14), converges to a stationary point
of (13)-(14). It remains to verify that V̄ is a stationary point
of (9)-(10) if and only if V̄, R̄,W̄ be a stationary point
of (13)-(14), which can be easily proved by following a similar
analysis as in [16, Appendix C] and [14].

2) Implementation: At each time slot, the receivers feedback
their direct and cross links to the central node, and based on the
global CSI obtained from all the receivers, the central node first
performs the precoding optimization to compute the optimal
V̄, and then distributes the optimal transmit beamforming
matrices to the transmitters for MIMO transmission. In an in-
terference channel (or an ad-hoc network), the central node can
reside at any node in the network. In a dynamic environment,
the scheduler can be adaptively elected among the eligible
nodes in the network [30]-[32]. The election can be done based
on the capacity of a node, the status of a node, and the location
of a node, etc. The research of the scheduler election issues is
important but beyond the scope of this paper. We assume that a
scheduler is available for the network within the time scale of

Algorithm 1 Sum-Power Minimization Algorithm.
1: Set the iteration number n = 0 and initialize the transmit

beamforming matrices V
(a),[0]
i , ∀ (i, a).

2: repeat
3: n← n+ 1.

4: Update the receive filter R(a),[n]
i , ∀ (i, a) using (16).

5: Update the weighting matrix W
(a),[n]
i , ∀ (i, a) using (17).

6: Update the optimal transmit beamforming matrix V
(b),[n]
i =

V̄
(b),[n]
i (λ∗) , ∀ (i, b) using (20), where λ∗ is the optimal

solution of (23).

7: until convergence or maximum number of iterations is reached.

interest. As will be detailed in Section IV-A, the complexity of
the proposed precoding optimization algorithm is polynomial
with respect to the number of users and antennas at each node.

B. Distributed Algorithm
The centralized algorithm proposed in the previous section

requires a central node to aggregate all CSI and perform the
optimization, which would incur heavy signaling overhead
and limit the network scalability. Therefore, we propose a
distributed algorithm that lowers the communication over-
head and explicit signaling mechanisms. Defining Q

(a)
i =

V
(a)
i

(
V

(a)
i

)H
, ∀(i, a) as the source-covariance matrix at the

user i(a), the achievable rate of the node i(a) in (8) can be
rewritten as

I
(a)
i (Q) = log2

∣∣∣∣IMi
+ H

(ab)
ii Q

(b)
i

(
H

(ab)
ii

)H
+ Σ̃

(a)

i

∣∣∣∣∣∣∣Σ̃(a)

i + IMi

∣∣∣ , (25)

where the interference covariance matrix Σ̃
(a)

i is defined in (7),
and Q =

{
Q

(a)
i : ∀(i, a)

}
is the set of all source-covariance

matrices.
To facilitate the distributed algorithm design, we first trans-

form the sum power minimization problem (9)-(10) into the
following equivalent form:

min
Q,Σ̃

K∑
i=1

2∑
a=1

tr
{

Q
(a)
i

}
(26)

s.t. I
(a)
i (Q) ≥ R(a)

i , ∀i ∈ K, a = 1, 2, (27)

R(a)
i = Σ̃

(a)

i , ∀i ∈ K, a = 1, 2, (28)

Q
(a)
i � 0, ∀i ∈ K, a = 1, 2, (29)

where Σ̃ =
{

Σ̃
(a)

i : ∀(i, a)
}

is the set of all interference-
covariance matrices. The introduction of the auxiliary variable
R(a)

i helps to decompose the joint optimization problem into
subproblems and facilitates the distributed implementation of
the algorithm, as will be shown later.
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Due to the non-convex rate constraint (27), the problem (26)-
(29) is non-convex. Here we apply successive convex approx-
imation (SCA) adopted in [33]-[34] to approximate (27) by
a series of convex problems, so that a suboptimal solution
of the problem (26)-(29) can be obtained by successively
solving these convex problems. Due to the concavity of the
log det function, the first-order approximation of the log det
function at X0 is written as log |I + X| ≤ log |I + X0| +

tr
{

(I + X0)
−1

(X−X0)
}

, which is true for X � 0. Let

Q
(a),[n−1]
i , Σ̃

(a),[n−1]

i , ∀ (i, a) denote the feasible point of the
problem (26)-(29) at the (n−1)th iteration, applying the first-
order approximation with X = Σ̃

(a)

i , and X0 = Σ̃
(a),[n−1]

i ,
the constraint (27) can be written as

log2

∣∣∣∣IMi
+ H

(ab)
ii Q

(b)
i

(
H

(ab)
ii

)H
+ Σ̃

(a)

i

∣∣∣∣∣∣∣Σ̃(a)

i + IMi

∣∣∣
=

(
log2

∣∣∣∣IMi
+ H

(ab)
ii Q

(b)
i

(
H

(ab)
ii

)H
+ Σ̃

(a)

i

∣∣∣∣
− log2

∣∣∣Σ̃(a)

i + IMi

∣∣∣)
≤
(

log2

∣∣∣∣IMi
+ H

(ab)
ii Q

(b)
i

(
H

(ab)
ii

)H
+ Σ̃

(a)

i

∣∣∣∣
− log2

∣∣∣IMi
+ Σ̃

(a),[n−1]

i

∣∣∣
− tr

{(
IMi

+ Σ̃
(a),[n−1]

i

)−1(
Σ̃

(a)

i − Σ̃
(a),[n−1]

i

)})
≥ R(a)

i , ∀i ∈ K, a = 1, 2. (30)

With this approximation, at the nth iteration, the following
problem is solved

min
Q,Σ̃

K∑
i=1

2∑
a=1

tr
{

Q
(a)
i

}
(31)

s.t. (28), (29), (30). (32)

Since the primal problem in (31) is not strictly convex, the
dual problem may not be differentiable at every point. To tackle
the difficulty due to the lack of strict convexity of (31), we use
the proximal optimization algorithm [35, pp. 232], in which
quadratic terms are added to the objective function (31), so that

we can use a duality based approach. The resulting regularized
problem is given by

min
Q,Σ̃,M,N

K∑
i=1

2∑
a=1

(
tr
{

Q
(a)
i

}
+
c
(a)
i

2

(∥∥∥Q(a)
i −M

(a)
i

∥∥∥2

F

+
∥∥∥Σ̃(a)

i −N
(a)
i

∥∥∥2

F

))
(33)

s.t. (28), (29), (30), (34)

where M
(a)
i and N

(a)
i are the auxiliary variables associated

with the original variables Q
(a)
i and Σ̃

(a)

i , respectively, and
c
(a)
i /2 is the weight of those quadratic terms. Here, the

newly added optimization variables are defined as M (N) ={
M

(a)
i

(
N

(a)
i

)
: ∀(i, a)

}
.

It can be easily verified that the optimal solution of (33)-(34)
is also optimal to (31)-(32). Since (33) is strictly convex, dual
decomposition [36] can be applied to deal with the coupled
constraints (28). The partial Lagrangian of (33) is given by

L
(
Q, Σ̃,M,N,Z

)
(35)

=
K∑
i=1

2∑
a=1

L(a)
i

(
Q

(a)
i , Σ̃

(a)

i ,M
(a)
i ,N

(a)
i ,Z

)
,

where Z
(a)
i is the Lagrangian multiplier associated with the

constraint (28), and Z =
{

Z
(a)
i : ∀(i, a)

}
. Here L(a)

i (·) is
defined as

L(a)
i

(
Q

(a)
i , Σ̃

(a)

i ,M
(a)
i ,N

(a)
i ,Z

)
= tr

{
Q

(a)
i

}
− tr

{(
Z

(a)
i

)H
Σ̃

(a)

i

}
+

K∑
l 6=i

2∑
m=1

tr
{(

Z
(m)
l

)H
H

(ma)
li Q

(a)
i

(
H

(ma)
li

)H}

+
K∑
l=1

2∑
m=1

tr
{(

Z
(m)
l

)H [
κH

(ma)
li diag

(
Q

(a)
i

)
×
(
H

(ma)
li

)H
+ βdiag

(
H

(ma)
li Q

(a)
i

(
H

(ma)
li

)H)]}
+
c
(a)
i

2

(∥∥∥Q(a)
i −M

(a)
i

∥∥∥2

F
+
∥∥∥Σ̃(a)

i −N
(a)
i

∥∥∥2

F

)
. (36)

X
(b)
i = λ

(a)
i ρi

((
H

(ab)
ii

)H
A

(a)
i H

(ab)
ii + κdiag

((
H

(ab)
ii

)H
A

(a)
i H

(ab)
ii

)
+ β

(
H

(ab)
ii

)H
diag

(
A

(a)
i

)
H

(ab)
ii

)
+ λ

(b)
i ηii

(
κdiag

((
H

(bb)
ii

)H
A

(b)
i H

(bb)
ii

)
+ β

(
H

(bb)
ii

)H
diag

(
A

(b)
i

)
H

(bb)
ii

)
+

K∑
j 6=i

2∑
c=1

λ
(c)
j ηji

((
H

(cb)
ji

)H
A

(c)
j H

(cb)
ji + κdiag

((
H

(cb)
ji

)H
A

(c)
j H

(cb)
ji

)
+ β

(
H

(cb)
ji

)H
diag

(
A

(c)
j

)
H

(cb)
ji

)
, (21)

A
(b)
i =

(
R

(b)
i

)H
W

(b)
i R

(b)
i , i = 1, . . . ,K, b = 1, 2. (22)
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With the above decomposition, an iterative dual-layer dis-
tributed algorithm can be derived to solve (33)-(34) based on
the standard proximal point method [27]. In the inner layer, the
original variables Q

(a)
i and Σ̃

(a)

i , ∀ (i, a) are optimized mainly
by iteratively solving the following problem (with the auxiliary
variables temporarily fixed) using the subgradient method [36]

max
Z

min
{Q,Σ̃}∈D

L
(
Q, Σ̃,M,N,Z

)
,

, max
Z

K∑
i=1

2∑
a=1

min{
Q

(a)
i ,Σ̃

(a)
i

}
∈D(a)

i

L(a)
i

(
Q

(a)
i , Σ̃

(a)

i ,M
(a)
i ,N

(a)
i ,Z

)
, (37)

where D(a)
i is the convex constraint set for Q

(a)
i and Σ̃

(a)

i
defined by the uncoupled constraints (29) and (30). Here
D = D(1)

1 × D(2)
1 × . . . × D(1)

K × D(2)
K . Note that the

uncoupled constraints in (37) are due to the introduction of
the auxiliary variable R(a)

i in (28). In each outer iteration,
the inner minimization in (37) is solved to obtain the optimal
solution for the original variables. Then with the obtained
original variables, in the inner iterations, the dual variables
Z

(a)
i is iteratively updated by the subgradient method with the

subgradient R(a)
i −Σ̃

(a)

i (cf. (28)) until their convergence. The
algorithm ends when the auxiliary variables converge.

Note that in the proposed algorithm all computations can be
carried out based on local information, and hence can be easily
distributed. More precisely, in the inner minimization problem
in (37) (the dual objective function), we have decomposed the
original problem into 2K separate subproblems for each user
i = 1, . . . ,K, a = 1, 2. Given Z, each subproblem can now
be solved independently.

IV. ENERGY-EFFICIENCY MAXIMIZATION

While sum-rate maximization is one of the most popular
design criteria in wireless communication systems, the energy-
efficiency maximization is another design criteria that has
drawn much attention recently due to increasing interest in
green wireless networks. Thus, it is of importance to study the
energy-efficiency of the FD MIMO interference channels.

The energy-efficiency metric is defined as the ratio of
weighted sum rate to the total power consumption, given by

EE (V) =
f1 (V)

f2 (V)
(38)

=

K∑
i=1

2∑
a=1

µ
(a)
i I

(a)
i (V)

K∑
i=1

2∑
a=1

(
ϑtr
{

V
(a)
i

(
V

(a)
i

)H}
+NiPc + P0

) ,

where µ(a)
i is the weight used to represent the priority of node

i(a) in the system, ϑ ≥ 1 is the power-amplifier inefficiency
which depends on the design and implementation of the power
amplifier, Pc is the dynamic circuit power consumption per

antenna corresponding to the power radiation of all circuit
blocks in the transmit filter, i.e., mixer, frequency synthesizer,
and DAC; and P0 is the static circuit power consumed at
the transmitter’s cooling system, power supply, etc., which is
independent of the number of transmit antennas. This linear
power model is adopted from [37], in which not only the
data-dependent transmit power, but also the circuit power
consumption in all components used for signal processing such
as mixer, filter, ADC, DAC, low-noise amplifier (LNA), etc.
also plays an important role in energy-efficiency performance.

The energy-efficiency maximization problem to compute the
optimal transmit beamforming matrices can be formulated as

max
V

EE (V) (39)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a), (40)

where P
(a)
i is the power constraint at node i(a), i =

1, . . . ,K, a = 1, 2. The problem (39)-(40) is non-convex
due to the coupling of optimization variables and the frac-
tional form of the objective function (39). Therefore convex
optimization tools cannot be applied to solve this challenging
problem. To this end, similar to [17], we will first transform the
original fractional problem into an equivalent non-fractional
problem by exploiting the relationship between fractional and
parametric programming problems [20]-[21], and then the
equivalent non-fractional problem is solved by exploiting the
relationship between WSR and WMMSE. We will develop a
two-layer approach to solve these two steps.

Theorem 1: The optimal precoding matrix V̄ achieves the

maximum energy-efficiency q∗, defined as q∗ =
f1(V̄)
f2(V̄)

=

maxV
f1(V)
f2(V) , if and only if

max
V

f1 (V)− q∗f2 (V)

= f1

(
V̄
)
− q∗f2

(
V̄
)

= 0, (41)

for f1 (V) ≥ 0 and f2 (V) > 0.
Proof: Theorem 1 can be proved by following a similar

approach as in [17], [20]. The optimal energy-efficiency can
be expressed as

q∗ =
f1

(
V̄
)

f2

(
V̄
) ≥ f1 (V)

f2 (V)

=⇒ f1 (V)− q∗f2 (V) ≤ 0, and
f1

(
V̄
)
− q∗f2

(
V̄
)

= 0.

Therefore, we conclude that maxV f1 (V) − q∗f2 (V) = 0
and it is achievable by the precoding matrix V̄. The converse
can be proved by reversing the steps of the proof.

From Theorem 1 we can conclude that for any objective
function in fractional form, there exists an equivalent objective
function in subtractive form, which shares the same objective
and constraint values. As a result, to find the optimal precoding
matrix with a given q, the optimization problem (39)-(40) in
fractional form can be solved by focusing on the problem
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below, which is in a tractable subtractive form.

max
V

K∑
i=1

2∑
a=1

µ
(a)
i I

(a)
i (V)− qf2 (V) (42)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀ (i, a) . (43)

It can be considered from Theorem 1 that the solution of the
problem (39)-(40) is also optimal if we can find a parameter
q such that the optimal value of problem (42)-(43) is zero.
The value of q in (42) can be treated as the penalty to the
energy-efficiency due to exceedingly high power consumption.
Assume that there is no penalty in using exceedingly high
power, i.e., q = 0, then the transformed objective function
reduces to the weighted sum-rate maximization problem.

Although we have tackled the fractional form problem
of the original energy-efficiency problem, the non-fractional
form problem (42)-(43) is still non-convex, since its optimiza-
tion variables are coupled. To tackle the coupling problem
of (42)-(43), we exploit the relationship between WSR and
WMMSE [15], [16] to further reformulate it into a tractable
form. Introducing the receive filters R in (16) and MSE-
weights W in (17), the problem (42)-(43) can be reformulated
as

max
V,R,W

f̄1 (V,R,W)− qf2 (V) (44)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀ (i, a) , (45)

where f̄1 (V,R,W) is expressed as

f̄1 (V,R,W) =
K∑
i=1

2∑
a=1

(
−tr
{

W
(a)
i MSE

(a)
i

}
+ µ

(a)
i log2

∣∣∣∣∣ ln 2

µ
(a)
i

W
(a)
i

∣∣∣∣∣+
diµ

(a)
i

ln 2

)
.(46)

Proposition 2: The problems (42)-(43) and (44)-(45) share
the same optimal transmit beamforming matrix V̄.

Proof: Substituting the optimal receive beamforming
matrices R̄ in (16) and MSE-weights W in (47) in the
objective function (44), and using the relation I

(a)
i (V) =

log2

∣∣∣∣(E(a)
i (V)

)−1
∣∣∣∣ in (11), the objective function (42) is

obtained.
Since the problem (44)-(45) is tractable and convex in

each of the optimization variable V,R,W, we can apply the
block coordinate ascent method to solve the problem (44)-
(45). Under fixed V,W, the optimal receive filters R̄ is given
in (16), and the optimal MSE-weights under fixed V,R is
given as

W̄
(a)
i =

µ
(a)
i

ln 2

(
E

(a)
i (V)

)−1

, (47)

where E
(a)
i (V) is given in (12). Under fixed R,W, the

problem to solve the optimal V̄ is expressed as

max
V

K∑
i=1

2∑
a=1

(
−tr
{

W
(a)
i MSE

(a)
i

}
− qϑtr

{
V

(a)
i

(
V

(a)
i

)H})
(48)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a). (49)

The Lagrange function of the problem (48)-(49) can be written
as

L (V,λ) =
K∑
i=1

2∑
a=1

(
−tr
{

W
(a)
i MSE

(a)
i

}
(50)

− qϑtr
{

V
(a)
i

(
V

(a)
i

)H})
−

K∑
i=1

2∑
a=1

λ
(a)
i

(
tr
{

V
(a)
i

(
V

(a)
i

)H}
− P (a)

i

)
,

where λ
(a)
i is the Lagrange multiplier associated with the

power constraint of transmitter i(a). For fixed λ, by taking
the partial derivative of L (V,λ) with respect to V

(b)
i , the

closed-form solution is expressed as

V̄
(b)
i

(
λ

(b)
i

)
=
√
ρi

(
λ

(b)
i INi

+ qϑINi
+ Y

(b)
i

)−1

×
(
R

(a)
i H

(ab)
ii

)H
W

(a)
i , (51)

where Y
(b)
i is shown in (52) at the bottom of the following

page.
The values of the Lagrange multiplier λ

(b)
i in (51) are

calculated by taking the eigenvalue decomposition of qϑINi
+

Y
(b)
i = U

(b)
i ∆

(b)
i

(
U

(b)
i

)H
and writing the power constraint

in (49), after simple steps, as

tr
{

V̄
(b)
i

(
λ

(b)
i

)(
V̄

(b)
i

(
λ

(b)
i

))H}
= ρi

Ni∑
k=1

g
(b)
ik(

λ
(b)
i + ∆

(b)
ik

)2

= P
(b)
i , (53)

where g
(b)
ik denotes the kth row and kth column element

of
(
U

(b)
i

)H(
H

(ab)
ii

)H(
R

(a)
i

)H

W
(a)
i

(
W

(a)
i

)H

R
(a)
i H

(ab)
ii U

(b)
i and

∆
(b)
ik denotes the kth row and kth column element of the matrix

∆
(b)
i . We can compute λ(b)

i from (53) numerically. If the values
of the Lagrange multipliers λ(b)

i are negative, we assign λ
(b)
i

as zeros.
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Algorithm 2 Energy-Efficiency Maximization Algorithm.
1: Set the energy-efficiency factor q = 0, and initialize all

the transmit beamforming matrices V
(a)
i , ∀ (i, a) such that

tr
{
V

(a)
i

(
V

(a)
i

)H
}
≤ P (a)

i .

2: repeat
3: Update the receive filter R(a)

i , ∀ (i, a) using (16).
4: Update the weighting matrix W

(a)
i , ∀ (i, a) using (47).

5: Update the transmit beamforming V
(b)
i using (51).

6: until convergence or maximum number of iterations is reached.
7: if f̄1 (V,R,W)− qf2 (V) ≤ ε then
8: Stop the iterations
9: else

10: q = f̄1(V,R,W)
f2(V)

, and go to Step 3.
11: end if

A. Remarks

1) Convergence: The iterative alternating algorithm for solv-
ing the energy maximization problem (39)-(40) through the
maximization problem (44)-(45) is given in Algorithm 2. Since
the updates at step 3, step 4, and step 5 all maximize the ob-
jective function at each iteration, the iterations in Algorithm 2
lead to monotone increase of the objective function (44). Since
the objective function under the practical power constraints
is bounded, the convergence of the alternating maximization
algorithm can be guaranteed with the monotonic convergence
theorem [38]. Since the objective function (44) is differen-
tiable, it follows from the general optimization theory [29],
[38] that a block coordinate ascent method converges to a
stationary point of problem (44)-(45). Based on these analyses,
the convergence of the Algorithm 2 can be guaranteed with the
fractional theorem obtained in [20].

2) Complexity: We count the floating point operations (flops)
required per iteration, where both a scalar complex multipli-
cation and a scalar complex addition count as one flop [39].
The complexity of some basic matrix calculations are approx-
imately counted as follows: Multiplication of two M ×N and
N × L matrices involves 2MNL − ML, multiplication of
AHA where A ∈ CM×N involves MN2 + N

(
M − N+1

2

)
,

and inverse of a N ×N matrix involves N3 +N2 +N flops.
Based on these references, the computation required for each
step in Algorithm 2 is as follows:

The computation of the receive beamforming matrix in (16):

• The terms inside the inverse:

2
K∑
j=1

Nj

(
djNj + dj −

Nj + 1

2
+ 4NjMi

+ 4M2
i − 2Mi

)
− 2M2

i .

• The inverse function: M3
i +M2

i +Mi.
• The matrix multiplications outside of the inverse:

2diMi (Ni +Mi − 1) .

The computation of the weighting matrix in (47):
• For the inverse of Σ

(a)
i : M3

i +M2
i +Mi.

• The matrix multiplications in E
(a)
i (V) given in (12):

di
(
2M2

i −Mi + 2Midi − di
)
.

The computation of the optimal transmit beamforming ma-
trix in (51):
• For the computation of Y

(b)
i :

2
K∑
j=1

(
Mjdj

(
2dj + 2Mj − 1− Mj

dj

)
+ 2NiMj

(
2Mj + 2Ni − 1− Ni

Mj

))
.

• For the inverse function: N3
i +N2

i +Ni.
• The matrix multiplications outside of the inverse:

Ni

(
2NiMi −Mi − 2di + 2Midi + 2d2

i

)
.

Assuming the same number of transmit and receive antennas
at each node, i.e., M = Mi, N = Ni, i = 1, . . . ,K,
using the flop computations above, the total computational
complexity of the proposed algorithm is in the order of
O
(
φ1φ2K

2
(
N2M +M2N +N3

)
+KM3

)
, where φ1 and

φ2 denote the number of iterations for the inner and outer
loops in Algorithm 2, respectively. Note that the computational
complexity of the sum-power minimization algorithm (Algo-
rithm 1) has the same order of computational complexity as
Algorithm 2, i.e., O

(
φ1K

2
(
N2M +M2N +N3

)
+KM3

)
.

Although Algorithm 2 may require a larger number of it-
erations than Algorithm 1, due to the additional search for
the energy efficiency factor q, in our simulations we have
observed that the search for the optimal q generally takes a
few iterations, therefore it will not significantly increase the
complexity.

Y
(b)
i = ρi

(
H

(ab)
ii

)H
A

(a)
i H

(ab)
ii + ρiκdiag

((
H

(ab)
ii

)H
A

(a)
i H

(ab)
ii

)
+ ρiβ

(
H

(ab)
ii

)H
diag

(
A

(a)
i

)
H

(ab)
ii

+ ηiiκdiag
((

H
(bb)
ii

)H
A

(b)
i H

(bb)
ii

)
+ ηiiβ

(
H

(bb)
ii

)H
diag

(
A

(b)
i

)
H

(bb)
ii

+
K∑
j 6=i

2∑
c=1

ηji

(
H

(cb)
ji

)H
A

(c)
j H

(cb)
ji + ηjiκdiag

((
H

(cb)
ji

)H
A

(c)
j H

(cb)
ji

)
+ ηjiβ

(
H

(cb)
ji

)H
diag

(
A

(c)
j

)
H

(cb)
ji . (52)
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3) Implementation: The proposed algorithm can be imple-
mented in a distributed manner, due to the fact that the updat-
ing of V,W,R all have independent closed-form expressions.
In other words, our scheme requires only the local CSI (i.e.,
each transmitter needs to know only the CSI of the links orig-
inating from itself) [16], [40], [41]. This information can be
obtained easily by overhearing signaling packets at the MAC
layer. For example, in the IEEE 802.11n scheme, assuming
the channel reciprocity, a transmitter can estimate the channel
between itself and the unintended receiver by capturing the
“Clear-to-Send” message, which contains a training sequence
from an unintended receiver [40], [42]. Since only local CSI is
required at each user, the proposed method fits for distributed
implementation.

B. Robust Beamforming Design
Given the presence of channel uncertainty at the transmitters

in practice, a more relevant and difficult problem of interest is
a robust counterpart of (39)-(40) in the presence of bounded
channel errors. In this section, the CSI of the channels are
assumed to be imperfectly known. The imperfect CSI is
modeled using deterministic norm-bounded error model [43]-
[45], which is expressed as

H
(ab)
ij ∈ H(ab)

ij =
{

H̃
(ab)
ij + Λ

(a)
i : ‖Λ(a)

i ‖F ≤ δ
(a)
i ,

j = 1, . . . ,K, b = 1, 2} ,

where H̃
(ab)
ij , Λ

(a)
i and δ

(a)
i ≥ 0 denote the nominal value

of the CSI known to the transmitters, the corresponding error
matrix, and the uncertainty bounds, respectively.

With the imperfect CSI, the worst-case optimization prob-
lem under channel uncertainty can be formulated as

max
V

min
∀H(ab)

ij ∈H
(ab)
ij

EE (V) (54)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a).(55)

By using the achievable rate and MSE relation used in the
problem (44)-(45), the robust optimization problem can be
written equivalently as

max
V

min
∀H(ab)

ij ∈H
(ab)
ij

max
R,W

f̄1 (V,R,W)

f2 (V)
(56)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a),(57)

where f̄1 (V,R,W) is given in (46). Unfortunately, this
formulation does not directly lead to a useful algorithm.
Therefore, we look at the max-min version of the inner min-
max problem in (56)-(57), which gives us the lower-bound.
This formulation is written as

max
V,R,W

min
∀H(ab)

ij ∈H
(ab)
ij

f̄1 (V,R,W)

f2 (V)
(58)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a).(59)

With the use of Theorem 1, the problem (58)-(59) can be
written as under fixed q

max
V,R,W

min
∀H(ab)

ij ∈H
(ab)
ij

f̄1 (V,R,W)− qf2 (V) (60)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a).(61)

By plugging f̄1 (V,R,W) in (46) into (60) and using epi-
graph form with the introduction of slack variables ς(a)

i , the
problem (60)-(61) can be equivalently written as

max
V,R,W,ς

K∑
i=1

2∑
a=1

(
−ς(a)

i + µ
(a)
i log2

∣∣∣∣∣ ln 2

µ
(a)
i

W
(a)
i

∣∣∣∣∣+
diµ

(a)
i

ln 2

)
− qf2 (V) (62)

s.t. tr
{
W

(a)
i MSE

(a)
i

}
≤ ς(a)

i , ‖Λ(a)
i ‖F ≤ δ

(a)
i ,∀(i, a)(63)

tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a), (64)

where ς =
{
ς
(a)
i : ∀ (i, a)

}
.

To solve the optimization problem (62)-(64), we write
tr
{

W
(a)
i MSE

(a)
i

}
in a vector form as tr

{
W

(a)
i MSE

(a)
i

}
,∥∥∥d(a)

i + D
(a)
i vec

(
Λ

(a)
i

)∥∥∥2

2
, where d

(a)
i and D

(a)
i are shown

in (65) and (66), respectively given at the bottom of the
following page2. In (65) and (66), W

(a)
i is decomposed

as W
(a)
i = B

(a)
i

(
B

(a)
i

)H
. With the vector forms in hand,

Schur complement lemma can be used to express the constraint∥∥∥d(a)
i + D

(a)
i vec

(
Λ

(a)
i

)∥∥∥2

2
≤ ς

(a)
i in (63) in linear matrix

inequalities (LMI) form: ς
(a)
i

(
d

(a)
i

)H
d

(a)
i I

A
(a)
i

 (67)

+

 0 vec
(
Λ

(a)
i

)H (
D

(a)
i

)H
D

(a)
i vec

(
Λ

(a)
i

)
0
A

(a)
i ×A

(a)
i

 � 0,

where A(a)
i , the dimension of the identity matrix, is written as

A
(a)
i = 2di

 K∑
j=1,j 6=i

dj +KN +
Mi + di

2

+ 2Mi

K∑
j=1

dj .

To further simplify this constraint, we use the following
lemma:

Lemma 1 ([46]): Given matrices P, Q, A with A = AH ,
the semi-infinite LMI of the form of

A � PHXQ + QHXHP, ∀X : ‖X‖F ≤ ρ,

2To simplify the presentation, from now on we will assume the number of
transmit antennas at the users is equal, i.e. N = Ni, i = 1, . . . ,K.
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holds if and only if ∃ε ≥ 0 such that

[
A− εQHQ −ρPH

−ρP εI

]
� 0.

By choosing

A =

 ς
(a)
i

(
d

(a)
i

)H
d

(a)
i I

A
(a)
i

 , P =

[
0NMi×1,

(
D

(a)
i

)H]
,

X = vec
(
Λ

(a)
i

)
, Q =

[
−1,0

1×A(a)
i

]
,

d
(a)
i =



√
ρi

[(
V

(b)
i

)T
⊗
((

B
(a)
i

)H
R

(a)
i

)]
vec

(
H̃

(ab)
ii

)
− vec

((
B

(a)
i

)H)
√
ρiκ

[(
diag

(
V

(b)
i

(
V

(b)
i

)H))1/2

⊗
((

B
(a)
i

)H
R

(a)
i

)]
vec

(
H̃

(ab)
ii

)
√
βρi

[(
V

(b)
i

)T
⊗

((
diag

((
R

(a)
i

)H
B

(a)
i

(
B

(a)
i

)H
R

(a)
i

))1/2
)]

vec
(
H̃

(ab)
ii

)
√
ηiiκ

[(
diag

(
V

(a)
i

(
V

(a)
i

)H))1/2

⊗
((

B
(a)
i

)H
R

(a)
i

)]
vec

(
H̃

(aa)
ii

)
√
βηii

[(
V

(a)
i

)T
⊗

((
diag

((
R

(a)
i

)H
B

(a)
i

(
B

(a)
i

)H
R

(a)
i

))1/2
)]

vec
(
H̃

(aa)
ii

)
⌊
√
ηij

[(
V

(c)
j

)T
⊗
((

B
(a)
i

)H
R

(a)
i

)]
vec

(
H̃

(ac)
ij

)⌋
j=1,...,K, j 6=i, c=1,2⌊

√
ηijκ

[(
diag

(
V

(c)
j

(
V

(c)
j

)H))1/2

⊗
((

B
(a)
i

)H
R

(a)
i

)]
vec

(
H̃

(ac)
ij

)⌋
j=1,...,K, j 6=i, c=1,2⌊√

βηij

[(
V

(c)
j

)T
⊗

((
diag

((
R

(a)
i

)H
B

(a)
i

(
B

(a)
i

)H
R

(a)
i

))1/2
)]

vec
(
H̃

(ac)
ij

)⌋
j=1,...,K, j 6=i, c=1,2

vec

((
B

(a)
i

)H
R

(a)
i

)



(65)

D
(a)
i =



√
ρi

[(
V

(b)
i

)T
⊗
((

B
(a)
i

)H
R

(a)
i

)]
√
ρiκ

[(
diag

(
V

(b)
i

(
V

(b)
i

)H))1/2

⊗
((

B
(a)
i

)H
R

(a)
i

)]
√
βρi

[(
V

(b)
i

)T
⊗

((
diag

((
R

(a)
i

)H
B

(a)
i

(
B

(a)
i

)H
R

(a)
i

))1/2
)]

√
ηiiκ

[(
diag

(
V

(a)
i

(
V

(a)
i

)H))1/2

⊗
((

B
(a)
i

)H
R

(a)
i

)]
√
βηii

[(
V

(a)
i

)T
⊗

((
diag

((
R

(a)
i

)H
B

(a)
i

(
B

(a)
i

)H
R

(a)
i

))1/2
)]

⌊
√
ηij

[(
V

(c)
j

)T
⊗
((

B
(a)
i

)H
R

(a)
i

)]⌋
j=1,...,K, j 6=i, c=1,2⌊

√
ηijκ

[(
diag

(
V

(c)
j

(
V

(c)
j

)H))1/2

⊗
((

B
(a)
i

)H
R

(a)
i

)]⌋
j=1,...,K, j 6=i, c=1,2⌊√

βηij

[(
V

(c)
j

)T
⊗

((
diag

((
R

(a)
i

)H
B

(a)
i

(
B

(a)
i

)H
R

(a)
i

))1/2
)]⌋

j=1,...,K, j 6=i, c=1,2

0diMi×NMi



(66)
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we can apply Lemma 1 in (67), and the resulting overall
optimization problem is formulated as

max
V,R,B,ς,ε

K∑
i=1

2∑
a=1

(
−ς(a)

i + µ
(a)
i log2

∣∣∣∣∣ ln 2

µ
(a)
i

B
(a)
i

(
B

(a)
i

)H ∣∣∣∣∣
+
diµ

(a)
i

ln 2

)
− qf2 (V) (68)

s.t. tr
{

V
(a)
i

(
V

(a)
i

)H}
≤ P (a)

i , ∀(i, a), (69)
ς
(a)
i − ε(a)

i

(
d

(a)
i

)H
01×NMi

d
(a)
i I

A
(a)
i

−δ(a)
i D

(a)
i

0NMi×1 −δ(a)
i

(
D

(a)
i

)H
ε
(a)
i INMi

� 0,∀ (i, a) , (70)

ε
(a)
i ≥ 0, ∀ (i, a) , (71)

where ε =
{
ε
(a)
i : ∀ (i, a)

}
, and B =

{
B

(a)
i : ∀ (i, a)

}
.

Although the problem (68)-(71) is non-convex, it becomes
a convex function of each optimization variable when the
other two are fixed. Therefore we can apply the coordinate
ascend method to update the transceiver matrices iteratively.
In particular, when V and R are fixed, the optimum B̄ can be
solved using MAX-DET algorithm [47], when B and R are
fixed, the optimum V̄ can be computed by solving the resulting
semidefinite programming (SDP) problem [48], and when B
and V are fixed, the optimum R̄ can be computed by solving
the resulting SDP problem. Since the alternating iterative
updates lead to monotonic increase of the objective function
in (68), and the fact that it is bounded above guarantees the
convergence of the proposed algorithm.

V. NUMERICAL RESULTS

In this section, we numerically investigate the sum-power
minimization and sum energy-efficiency maximization prob-
lems for a FD MIMO interference channel. For brevity, we
set the same number of transmit and receive antennas at each
node, i.e. Mi = Ni = N, i = 1, . . . ,K.3

All the direct and the CCI channel matrices are assumed to
be standard Rayleigh fading of unit variance, i.e., the entries
of each matrix are i.i.d. circular complex Gaussian variables
with zero mean and unit variance. We adopt the Rician model
in [1], in which the self-interference channel is distributed as
H̃0 ∼ CN

(√
KR

1+KR
Ĥ0,

1
1+KR

IN0
⊗ IM0

)
, where KR is the

Rician factor, and Ĥ0 is a deterministic matrix. Without loss
of generality, we set KR = 1 and Ĥ0 to be the matrix of
all ones for all experiments. We set the average power gain
of the self-interference channel at the ith pair to be ηii = 1

3Note that although the nodes in the ith link have Ni +Mi antennas in
total, similar to [4], we assume that only Ni (Mi) antennas can be used for
transmission (reception) in HD mode. The reason is that in practical systems
RF front-ends are scarce resources, since they are much more expensive than
antennas. Therefore we assume that the nodes in the ith link only has Ni

transmission front-ends and Mi receiving front-ends, and do not carry out
antenna partitioning.
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Fig. 2. Convergence behavior of the Sum-Power minimization algorithm.

and the average power gain of the CCI channel between the
nodes at the ith and jth pair to be ηij = 0.5. The average
power gain of any transmitter-receiver pair, i.e., ρi is set to
1. The initial values for the proposed iterative methods are
generated randomly for each channel realization. The results
are averaged over 100 independent channel realizations, and
the convergence thresholds are 10−5.

We compare our proposed algorithms, in which all the
pairs operate in FD mode, and transmit at the same time (in
particular, we have both self-interference, and CCI from all
the pairs in the system) with the HD baseline system. For the
HD mode, we adopt the same algorithm proposed for the FD
mode, by only omitting the self-interference channel and some
part of the CCI channel. In particular, in HD mode, in the first
time slot, all the nodes on the left hand side in Fig. 1 transmit
to their pairs on the right. And in the second time slot the
nodes on the right hand side in Fig. 1 transmit to their pairs
on the left. So in this case, we do not have self-interference,
but we have CCI from only one side of nodes, and sum-rate
is divided by 2.

A. Sum-Power Minimization

The rate constraint at each node is assumed to be the
same, i.e., R(a)

i = R, ∀ (i, a). Unless otherwise stated, the
parameters we use: K = 2, N = 4, κ = β = −70dB, and
R = 2bits/s/Hz.

Fig. 2 shows the convergence of the proposed sum-power
minimization algorithm given in Algorithm 1. The monotonic
decrease of the sum-power is verified for a random channel
realization. Moreover, since iteration method’s performance
may rely on initialization state, for the sake of comparison,
plots for two initialization methods are also shown in the
figure. In particular,

1) Random matrices initialization: Initialize all the trans-
mit filters with i.i.d. Gaussian random variables.
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Fig. 3. Sum-Power comparison of FD systems for the centralized and
distributed algorithms.
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Fig. 4. Sum-Power comparison of FD and HD systems with respect to
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2) Right singular matrices initialization: Initialize the
i(a)th transmit filter V

(a)
i with the first di columns of

the right singular matrix of H
(ba)
ii . The initial transmit

filters are normalized to satisfy the individual power
constraints.

While solid lines correspond to random matrix initialization,
dashed lines correspond to right singular matrices initializa-
tion. It can be seen from the figure that, both initialization
techniques yield almost the same output, which suggests that
the algorithm is insensitive to initialization methods, and the
right singular matrices initialization converges slightly faster
than random matrices one.

In our next example, we compare the centralized and dis-
tributed algorithms discussed in Section III for FD systems.
Fig. 3 depicts the power consumption in 50 different channel
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Fig. 5. Sum-Power comparison of FD and HD systems with respect to desired
data rate, R.

realizations. Since both algorithms converge to locally optimal
solutions, there is no guarantee that one will always outperform
the other. However, it is seen that the centralized algorithm
usually performs better than the distributed one. Although
the centralized algorithm outperforms the distributed one, the
distributed scheme requires only the local CSI (i.e., each
transmitter needs to know only the CSI of the links originating
from itself), whereas the centralized method requires the CSI
for all links (global CSI). The complexity of the centralized
algorithm increases substantially as the number of links in-
creases and it comes at the cost of signaling overhead. On
the contrary, the proposed distributed scheme requires each
link to collect only local CSI, and thus possesses improved
scalability and less complexity, since the computation is now
distributed among all the nodes and not only the central node.
This may be an important consideration when the network size
grows. However, hereinafter in the following figures related to
sum-power minimization problem, we will only consider the
centralized algorithm.

In the following example, we will analyze the effect of the
transmitter and receiver distortion on FD and HD systems. It
can be seen from Fig. 4 that HD system is not affected with
κ and β values. When the distortion at the transmitter/receiver
is low, FD system requires less power to achieve the same
throughput. However, this trend changes when the distortion
values are high. The performance shift happens at around κ =
β = −60dB.

In Fig. 5, we compare FD with HD systems in terms of sum-
power consumption for different values of desired data rates.
It is quite evident from the figure that greater demands of rate
can be fulfilled by increasing the transmitted power. However,
at low transmitter/receiver distortion (in this case -70dB), FD
systems requires less power than HD system to provide a
certain rate. Also can be seen that the gap in performance
between FD and HD systems increases with the increase in
data rates, which further emphasizes the superiority of FD
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Fig. 6. Convergence behavior of the EE maximization algorithm.

systems over HD systems.

B. Energy-efficiency Maximization
Hereinafter, we analyze the energy-efficiency maximization

algorithm based on a certain transmit power constraint for each
node in the system, i.e., P (b)

i , ∀ (i, b). We also assumed the
same weights, i.e., µ(a)

i = µ, ∀(i, a). Unless otherwise stated,
the parameters we use: K = 2, N = 4, P (b)

i = 33dBm,
κ = β = −70dB, and ϑ = 1/0.32.

Fig. 6 shows the evolution of the proposed algorithm given
in Algorithm 2. We set the circuit power to Pc = 38dBm
and the basic power consumed by the transmitters to Po =
27dBm. It can be seen that the energy-efficiency maximization
problem converges in a few steps and it does so monotonically.
Moreover, similar to Fig. 2, we show that this algorithm is
also insensitive to initialization techniques, where both random
and right singular matrix initializations yield almost the same
result.

In Fig. 7, the comparison between the energy-efficiency of
a FD system to that of a HD system is shown. Based on the
optimal energy-efficiency design, the FD and HD curves are
plotted with respect to κ = β values. The settings for the
circuit power and the basic power consumed by the transmitters
are maintained from the previous figure. As can be seen in the
figure, the performance of HD system is not affected with κ
and β values. However, HD system outperforms FD system in
terms of energy-efficiency. This can be explained as follows.
All the channels of the FD systems are always active, none
being silent at any point of time as all the nodes transmit
and receive at the same time-slot, and needs to overcome
self-interference and extra CCI which leads to more power
consumption than the HD transmission mode. However, in HD
system, only the nodes of one side (left or right) transmit in
one time slot. As a result the HD system requires less energy
than the FD one for the same period of operation, which makes
it more energy-efficient as compared to FD systems.
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Fig. 7. EE comparison of FD and HD systems with respect to transmit-
ter/receiver distortion, i.e., κ, β.

20 25 30 35 40 45 50 55 60
Maximum transmit power (dBm)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 (

B
it
s
/J

o
u
le

)

Half Duplex
Full Duplex

Fig. 8. EE comparison of FD and HD systems with respect to P (a)
i .

In Fig. 8, we compare the energy-efficiency of a FD system
to that of a HD system with respect to the maximum transmit
power constraint. The circuit power is set to Pc = 38dBm and
the basic power consumed by the transmitters to Po = 27dBm.
Similar to the previous figure, HD system is more energy-
efficient than FD systems at high transmit power constraints.
However, the gap in performance is less and somewhat equiv-
alent at lower transmitted power. The reason is that increased
transmission power is more beneficial for HD systems in term
of sum-rate, because higher transmission power leads to higher
self-interference power in FD systems.

In Fig. 9, we compare the energy-efficiency of a FD system
with respect to two designs, namely i) energy-efficiency (EE)
maximization and ii) spectral efficiency (SE) maximization.
Note that the EE maximization algorithm proposed in Algo-
rithm 2 can be modified to solve the WSR problem by dropping
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Fig. 9. Comparison between EE and SE maximization algorithms with respect
to Pc.

the outer layer, where the energy-efficiency parameter q is
updated. The basic power consumed by the transmitters is
Po = 35dBm and the transmit power constraint is 42dBm.

Based on the two transmit beamforming design techniques,
the FD curves are plotted with respect to the power consumed
by the circuit components in the system. It can be seen from the
figure that the transmit beamforming design based on EE max-
imization performs better and at low circuit power significantly
outperforms the other. This is due to the fact that the transmit
beamforming design based on the SE maximization does not
take into consideration other sources of power consumed.
We however note that as the circuit power increases, the
energy-efficiency of both the designs decreases and somewhat
becomes equivalent. At high circuit power values, maximizing
the energy-efficiency is equivalent to maximizing the spectral-
efficiency, since the total consumed power depends mostly on
the circuit power consumption.

To further compare the two designs, in Fig. 10 we evaluate
the energy-efficiency performance of both the designs with
respect to the maximum transmit power constraint. We set the
circuit power to Pc = 38dBm and the basic power consumed
by the transmitters to Po = 27dBm. At low transmit power
consumption region, both designs show equivalent energy-
efficiency performance, and the energy-efficiency of both
designs increases as the maximum transmit power constraint
increases, since in this low transmit power consumption region,
the total power consumption is primarily due to the circuit
power consumption. However, as we increase the transmit
power, the energy-efficiency of SE transmit beamforming de-
sign attains a maximum energy-efficiency for a certain power
and its energy-efficiency performance decreases after that.
On the other hand, the energy-efficiency of the EE transmit
beamforming design does not decrease, and increases until it
reaches to a peak value and remains constant after that. This
is due to the fact that to maximize the spectral-efficiency, full
power transmission is required in the SE maximization design,
which leads to a linear increase in total power consumption in
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Fig. 10. Comparison between EE and SE maximization algorithms with
respect to P (a)

i .

high transmit power regime. The spectral-efficiency however,
increases on a logarithmic scale with respect to the transmitted
power which becomes more implicit in the high transmit power
regime. Hence, the energy-efficiency of the SE design reduces
at high transmit power consumption region. The technique
used for energy-efficiency maximization in the EE design,
ensures that an optimal transmit power is found and if that
optimal power is less than the maximum transmitted power,
the EE-optimal design does not transmit at full power. As a
result the energy-efficiency of this design remains constant
after it reaches a certain peak power. Moreover, for the
sake of comparison, plots for two initialization methods, as
discussed before are also shown in this figure. While solid
lines correspond to random matrix initialization, dashed lines
correspond to right singular matrices initialization. As was
seen before, here again both initialization techniques provide
equivalent performance.

VI. CONCLUSION

In this work, we have addressed the transmit beamforming
design for sum-power minimization and sum energy-efficiency
maximization problems in a FD MIMO interference channel
that suffer from self-interference and interference from other
links under the limited DR at the transmitters and receivers.
Since the globally optimal solution is difficult to obtain due
to the non-convex nature of the problems, an alternating
iterative algorithm to find a stationary point was proposed
based on the relationship between WSR and WMMSE prob-
lems. Extensions to distributed and robust algorithms under
imperfect CSI assumption are also provided. The numerical
results show that in HD systems, the sum-power obtained is
invariant to the transmitter/receiver distortion. However, the
sum-power achieved in FD mode depends heavily on the
transmitter/receiver distortion as can be expected. Also the
energy-efficiency obtained is lower in FD than HD systems.
In particular, there is a penalty in energy efficiency for FD
operation, since additional power is consumed to overcome
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the interference from introduced by FD operation, i.e., self-
interference and extra CCI.
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