6 research outputs found

    Optimum channel allocation in OFDMA multi-cell systems

    Get PDF
    This paper addresses the problem of allocating users to radio resources (i.e., sub-carriers) in the downlink of an OFDMA cellular system. We consider a classical multi-cellular environment with a realistic interference model and a margin adaptive approach, i.e., we aim at minimizing total transmission power while maintaining a certain given rate for each user. We discuss computational complexity issues of the resulting model and present a heuristic approach that finds optima under suitable conditions, or "reasonably good" solutions in the general case. Computational experiences show that, in a comparison with a commercial state-of-the-art optimization solver, our algorithm is quite effective in terms of both infeasibilities and transmitted powers and extremely efficient in terms of CPU times. © 2009 Springer Berlin Heidelberg

    Advanced Techniques for Future Multicarrier Systems

    Get PDF
    Future multicarrier systems face the tough challenge of supporting high data-rate and high-quality services. The main limitation is the frequency-selective nature of the propagation channel that affects the received signal, thus degrading the system performance. OFDM can be envisaged as one of the most promising modulation techniques for future communication systems. It exhibits robustness to ISI even in very dispersive environments and its main characteristic is to take advantage of channel diversity by performing dynamic resource allocation. In a multi-user OFDMA scenario, the challenge is to allocate, on the basis of the channel knowledge, different portions of the available frequency spectrum among the users in the systems. Literature on resource allocation for OFDMA systems mainly focused on single-cell systems, where the objective is to assign subcarriers, power and data-rate for each user according to a predetermined criterion. The problem can be formulated with the goal of either maximizing the system sum-rate subject to a constraint on transmitted power or minimizing the overall power consumption under some predetermined constraints on rate per user. Only recently, literature focuses on resource allocation in multi-cell networks, where the goal is not only to take advantage of frequency and multi-user diversity, but also to mitigate MAI, which represents one of the most limiting factor for such problems. We consider a multi-cell OFDMA system with frequency reuse distance equal to one. Allowing all cells to transmit on the whole bandwidth unveils large potential gains in terms of spectral efficiency in comparison with conventional cellular systems. Such a scenario, however, is often deemed unfeasible because of the strong MAI that negatively affects the system performance. In this dissertation we present a layered architecture that integrates a packet scheduler with an adaptive resource allocator, explicitly designed to take care of the multiple access interference. Each cell performs its resource management in a distributed way without any central controller. Iterative resource allocation assigns radio channels to the users so as to minimize the interference. Packet scheduling guarantees that all users get a fair share of resources regardless of their position in the cell. This scheduler-allocator architecture integrates both goals and is able to self adapt to any traffic and user configuration. An adaptive, distributed load control strategy can reduce the cell load so that the iterative procedure always converges to a stable allocation, regardless of the interference. Numerical results show that the proposed architecture guarantees both high spectral efficiency and throughput fairness among flows. In the second part of this dissertation we deal with FBMC communication systems. FBMC modulation is a valid alternative to conventional OFDM signaling as it presents a set of appealing characteristics, such as robustness to narrowband interferers, more flexibility to allocate groups of subchannels to different users/services, and frequency-domain equalization without any cyclic extension. However, like any other multicarrier modulations, FBMC is strongly affected by residual CFOs that have to be accurately estimated. Unlike previously proposed algorithms, whereby frequency is recovered either relying on known pilot symbols multiplexed with the data stream or exploiting specific properties of the multicarrier signal structure following a blind approach, we present and discuss an algorithm based on the ML principle, which takes advantage both of pilot symbols and also indirectly of data symbols through knowledge and exploitation of their specific modulation format. The algorithm requires the availability of the statistical properties of channel fading up to second-order moments. It is shown that the above approach allows to improve on both frequency acquisition range and estimation accuracy of previously published schemes

    DR9.3 Final report of the JRRM and ASM activities

    Get PDF
    Deliverable del projecte europeu NEWCOM++This deliverable provides the final report with the summary of the activities carried out in NEWCOM++ WPR9, with a particular focus on those obtained during the last year. They address on the one hand RRM and JRRM strategies in heterogeneous scenarios and, on the other hand, spectrum management and opportunistic spectrum access to achieve an efficient spectrum usage. Main outcomes of the workpackage as well as integration indicators are also summarised.Postprint (published version

    Radio resource allocation problems for OFDMA cellular systems

    No full text
    Orthogonal frequency division multiple-access (OFDMA) manages to efficiently exploit the inherent multiuser diversity of a cellular system by performing dynamic resource allocation. Radio resource allocation is the technique that assigns to each user in the system a subset of the available radio resources (mainly power and bandwidth) according to a certain optimality criterion on the basis of the experienced link quality. In this paper we address the problem of resource allocation in the downlink of a multi-cellular OFDMA system. The allocation problem is formulated with the goal of minimizing the transmitted power subject to individual rate constraint for each user. Exact and heuristic algorithms are proposed for the both the single-cell and the multi-cell scenario. In particular, we show that in the single-cell scenario the allocation problem can be efficiently solved following a network flow approach. In the multi-cell scenario we assume that all cells use the same frequencies and therefore the allocation problem is complicated by the presence of strong multiple access interference. We prove that the problem is strongly NP-hard, and we present an exact approach based on an MILP formulation. We also propose two heuristic algorithms designed to be simple and fast. All algorithms are tested and evaluated through an experimental campaign on simulated instances. Experimental results show that, although suboptimal, a Lagrangian-based heuristic consisting in solving a series of minimum network cost flow problems is attractive for practical implementation, both for the quality of the solutions and for the small computational times

    Radio Resource Allocation problems for OFDMA Cellular Systems

    No full text
    Orthogonal frequency division multiple-access (OFDMA) manages to efficiently exploit the inherent multi-user diversity of a cellular system by performing dynamic resource allocation. Radio resource allocation is the technique that assigns to each user in the system a subset of the available radio resources (mainly power and bandwidth) according to a certain optimality criterion on the basis of the experienced link quality. In this paper we address the problem of resource allocation in the downlink of a multi-cellular OFDMA system. The allocation problem is formulated with the goal of minimizing the transmitted power subject to individual rate constraint for each user. Exact and heuristic algorithms are proposed for the both the single-cell and the multi-cell scenario. In particular, we show that in the single-cell scenario the allocation problem can be efficiently solved following a network flow approach. In the multi-cell scenario we assume that all cells use the same frequencies and therefore the allocation problem is complicated by the presence of strong multiple access interference. We prove that the problem is strongly NP-hard, and we present an exact approach based on an MILP formulation. We also propose two heuristic algorithms designed to be simple and fast. All algorithms are tested and evaluated through an experimental campaign on simulated instances. Experimental results show that, although suboptimal, a Lagrangian-based heuristic consisting in solving a series of minimum network cost flow problems is attractive for practical implementation, both for the quality of the solutions and for the small computational times
    corecore